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Physics for the Life Sciences: Fall 2008 Lecture #25 
 

Real fluids:  
 
As we have mentioned several times, real fluids are more complex than the ideal fluids 
described by the continuity equation and Bernoulli’s equation. Fluid dynamics is one of 
the most complex subjects in physics, and is now addressed using the world’s largest 
supercomputers. John von Neumann, one of the great early physicist/computer scientists, 
once commented that assuming no friction in fluids is like “working with dry water”. 
Many of the important and interesting phenomena associated with fluids emerge from the 
“extra” properties of real fluids. As you might expect, these interesting properties of real 
fluids are regularly used by living things to accomplish their goals, so it is especially 
important that you should understand some aspects of them.  
 
Today we will introduce real fluids, and especially get an idea of how we describe them. 
Along the way we’ll see how even a basic consideration of friction in fluids explains a lot 
of new phenomena. This is a rich and very current field, important because most of the 
matter in the universe is in fluid form. Even the Earth itself, the canonical solid object, is 
mostly a fluid, covered by a thin solid crust. In addition, all life we know moves in fluids, 
air or water, so the behavior of these real fluids places strong constraints on how living 
things evolved.  

Returning to the definition of fluids and shear stress 
 
Remember how shear stress works in solids:  
   (F/A) = S(Δx/L) 
Where F/A is the shear stress (the force per unit area creating the shear) and Δx/L is the 
shear strain, how much the material distorts under the stress. See the picture below: 
 
 
 
 
 
This is what happens when you apply a shear stress in a solid. What happens in a fluid? If 
I apply a shear stress, instead of just distorting and coming to a halt like the solid does, it 
begins to flow. There is no limit to the shear strain which can be produced in a fluid. Any 
shear stress can produce an infinite shear strain.  
 
So, what’s the appropriate thing to associate with the varying properties of fluids? If I 
apply a shear stress to some water, and apply the same stress to tar, they both will flow, 
and both will flow as far as I like if I wait long enough. It’s clear that something is 
different about these two fluids. How should we quantify this difference? 
 

L 
Δx 
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Viscosity and time rate of change of fluid shear. 
 
Fluids with low internal friction shear rapidly, those with high internal friction shear 
slowly. This can be expressed in the equation: 
 (F/A) = η(v/L) 
here the F/A is again the shear stress. Now instead of a strain (Δx/L), we have a time rate 
of change of a strain (v/L), and instead of the shear modulus S we have the “viscosity” η. 
 
Viscosity is a measure of the internal friction of fluids, how much they resist flow. The 
units of viscosity are: 
 
 η = N/m2 / [(m/s)/m] = Nsm-2 = (N/m2)s = Pascal*second 
 
unfortunately this SI unit is not always used, and instead viscosity is usually tabulated in 
terms of “poise”, a unit named for the French scientist Poiseuille, and defined as: 
 
 1 poise = 0.1 Nsm-2 
 
In fact, viscosities are often given in tables in units of “centipoise”, or 100ths of a Poise. 
So you’ll have to be careful if you take viscosity values from the literature. Here are 
some example values for viscosity measured in the SI unit Pascal*second. 
 
Temp °C Water Air Mercury SAE 10 

motor oil
SAE 30 

motor oil
Glycerin Honey 

0 1.8x10-3 1.7x10-5 1.7x10-3     
20 1.0x10-3 1.8x10-5 1.6x10-3 7x10-2 0.3 0.5 1.5 
40 0.7x10-3 1.9x10-5 1.4x10-3     
60 0.5x10-3 2.0x10-5      
80 0.4x10-3 2.1x10-5      
100 0.3x10-3 2.2x10-5 1.2x10-3     

 
Note a few facts which are apparent from this table. Liquid viscosities decrease with 
temperature, while gas viscosities increase. This is because the increasing thermal energy 
available as temperature rises in liquids makes it easier for atoms to flow past one 
another. In a gas, like air, the increasing temperature implies more frequent collisions 
among the atoms, and hence greater viscosity. It’s also worth noting that fluid viscosities, 
even in this short table, can vary a lot. Honey is about 100,000 times as viscous as air. 

Consequences of viscosity 
 
How do fluids with viscosity flow differently from ideal fluids, which would have a 
viscosity of zero? Here are a few of the key consequences. 
 
1: Loss of pressure in flow: Energy is lost as a fluid flows. This effectively adds another 
term to Bernoulli’s equation: 
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 P1 + ρgh1 + 1/2ρv1
2 = P2 + ρgh2 + 1/2ρv2

2 + Losses of energy due to viscosity 
 
So even in constant velocity flow in a horizontal pipe (where h and v remain constant), 
pressure declines along a flow. This should not be too surprising. In the presence of 
friction, it costs something to keep a fluid flowing. 
 
2: Flow layering and laminar flow: The velocity of flow at the wall of a pipe is zero. It 
rises to the center of the flow, and then falls back to zero at the opposite wall. Imagine 
water flowing down through in a pipe or a river. The shear stress coming from gravity is 
the same everywhere, so you have: 
 (F/A) = η(v/L) 
where L is the distance from the wall. This means v = L(F/Aη); the speed of the flow is 
proportional to the distance from the wall. 

 
You can see this in many flows, such as when a river flows rapidly in the center and 
slowly at the edges. This layered, “laminar” flow is a widespread phenomenon for 
smooth flows, and plays an important role in many living systems. 
 
3: Terminal velocity in falling bodies. The rate at which the fluid can move out of the 
way of the falling body is dependent on the viscosity of the fluid. Under a constant strain 
(the weight of the falling body) the fluid reaches a constant velocity, the value of which is 
governed by the viscosity η. 
 
This is actually a bit more complicated. Even motion through a fluid without friction will 
exhibit terminal velocity. Just accelerating the fluid to get it out of the way requires that a 
falling object exert a force on the fluid, implying a reciprocal force on the falling object. 
For ‘large’ objects falling at ‘large’ velocities, like you or I falling through air, this 
inertial effect is the most important. For small objects falling at low velocities, the 
frictional effects associated with viscosity are more important.  
 
You can see that in the two fluid friction laws we discussed so much earlier in the class: 

Ff
fluid

 = 12πηDv  (small/slow) 
Ff

fluid
 = 1/2CρAv2   (large/fast) 

We will (finally) see how to decide what constitutes ‘large’ objects and velocities below. 

L 
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Limitations of this picture 
 

This is a kind of first approximation, much better than assuming no friction. But it is 
limited. The assumption we have made that: 
 (F/A) = η(v/L) 
assumes that η is independent of velocity. Fluids which obey this are called Newtonian 
fluids (because he first stated this relationship). 
 
There are many non-Newtonian fluids, including most biological fluids, blood for 
example. As the velocity of blood increases, cells align themselves with the flow, 
lowering the friction. Such a material is called “shear-thinning”, because it becomes less 
viscous once it starts to flow. This is common in suspensions and otherwise non-uniform 
liquids.  
 
Many other common examples of non-Newtonian fluids exist, like egg white (albumen), 
a “visco-elastic” fluid, which is elastic for small shears and can spring back to its original 
shape, but will flow like any liquid for larger shears. Ketchup is another well known 
shear-thinning fluid. Once ketchup starts to flow, it does so very freely, blopping out all 
over your French fries. Then there is the famous corn starch and water concoction you 
may have played with in elementary school. This is a “shear-thickening” fluid. If you 
apply a small shear it will flow nicely, but if you apply a large shear it becomes very 
viscous indeed. 
 
What we have said about simple works best with uniform, one component fluids. What 
this means for life is that if it wants to get around the limitations of simple fluids, it can 
often work up a kind of a cocktail mix of things which will behave the way it needs. A 
recently published example is the visco-elastic properties of the digestive juices of a 
carnivorous pitcher plant. This gooeyness greatly increases the chance that a fly landing 
in the fluid will be unable to escape8 
 
Kinematic viscosity 
 
This discussion of fluid flow is still really static; what stable state of flow does the fluid 
reach after we give it time to settle down. The dynamical response of a fluid to a stress 
depends on both the viscosity and the density of the fluid. This just reflects the difference 
in inertia between two fluids with the same viscosity. So it is often useful to talk about 
the kinematic viscosity of a fluid: 
  

Kinematic viscosity = η/ρ 
 
A whirlpool of air stops spinning much faster than a whirlpool of water, because although 
the viscosity of air is 50 times less than that of water, the density is 1000 times less. So 

                                                 
8 Gaume L, Forterre Y 2007 A Viscoelastic Deadly Fluid in Carnivorous Pitcher Plants. PLoS ONE 2(11): 
e1185 doi:10.1371/journal.pone.0001185 
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although there is somewhat less viscous force available to stop the air, much less is 
needed, and it stops much more quickly. The difference in kinematic viscosity of these 
two expresses this different response to change much better than a simple comparison of 
their viscosities. 
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Physics for the Life Sciences: Fall 2008 Lecture #26 
 
Real fluid flow and turbulence 
 
We have been discussing fluid flow which is smooth and laminar, neatly layered and 
without mixing. But that’s not what we often see in fluid flow. Instead we see a swirling 
mixing of fluids, a much more complicated flow in which stability is not evident. What 
causes this turbulence, and what marks the transition between smooth flow and 
turbulence? 
 
If the motion of a fluid is dominated by internal friction, by viscous drag, the flow will 
always be smooth. Any deviations from smoothness will be “damped out” by the friction 
before they have a chance to become large. This is what you usually see when you pour 
highly viscous liquids like honey or syrup. Just try mixing a jar of honey with a spoon 
and you’ll see what I mean. 
 
On the other hand, if the friction is small and something disturbs the flow even slightly, 
the elements of the fluid which are disturbed will be able to travel far from where they 
would be in smooth flow before the viscous effects stop them. This in turn allows them to 
affect other parts of the fluid before they are stopped, leading to a kind of cascade of 
confusion. This is what you usually see in the flow of air, perhaps most clearly when you 
look at the smoke from a recently extinguished candle. Swirling around, it doesn’t take 
long for the smoke to be well mixed with the air around it. 

Reynold’s number as the thing which characterizes fluid flow 
 
Somehow the important thing is the balance between the inertia of a bit of the fluid, and 
the size of the viscous forces acting on it. What follows is a generic discussion of how 
these two things might vary with the parameters of the material. 
 
First consider the inertia of the object: what size force does it take to stop it? 
 Ma = (ρL3)a ≈ (ρL3) (v/Δt) ≈ (ρL3)v/(L/v) = ρL2v2 
Where I have assumed Δt = L/v is a reasonable approximation for how quickly I might 
make it stop. That is, I want it to stop before it would travel its own length. 
 
Viscous forces: what size force is available to stop it? 
 F/A = η(v/L) implies  F = η(v/L)L2 = ηvL 
 
The ratio of these two forces is a dimensionless number: 
 
 R = (inertial properties)/(viscous forces) = (ρL2v2)/(ηvL) = ρLv/η 
 
This is the famous Reynolds’ number R, names for British fluid mechanic Osborne 
Reynolds. Note that it is dimensionless, a pure number independent of what units we 
measure it in: 
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 (kg/m3)m(m/s) / (kgm/s2)sm-2  
 
What does this dimensionless nature mean? It suggests that R is an important number, 
because it allows us to compare problems on all kinds of scales, independent of the units 
we use, so that they can be uniformly understood. 

Meaning of Reynolds’ number 
 
R is dimensionless, so it only has a value, not units. Remember that it’s the ratio of 
inertial properties to viscous forces. If R is small, then the viscous forces are dominant 
and the flow is smooth and steady. If R is large, then viscous forces are negligible and the 
flow rapidly becomes complex and turbulent. 
 
What is “large” and “small”? Can we guess from the way we formulated it?  
 

R < 1/1000      Viscous forces completely dominate 
1/10 < R < 10       Mixed behavior 
1000 < R < 3000   Drag negligible, but still influences large scale flow patterns 
3000 < R       Flow is “fully” turbulent 
 

We brushed over a problem though, what is this length scale L we have used in 
determining R? L is the thing which sets the scale for the problem. Could be the size of 
an object moving through a fluid, diameter of a pipe through which it flows, etc. It’s the 
scale on which we want to examine the fluid.  
 
We can ask about different length scales within the same problem even. Imagine the flow 
of water in a pipe of radius rpipe. If we wish to know about the flow in the pipe overall, we 
might use this length scale. But imagine that we want to know what the flow is like 
around little bumps on the wall. If these are smaller, with size rbump << rpipe, the flow 
around them may have a different nature. For example, the Reynolds’ number for the 
pipe as a whole might be large (both rpipe and v are large for the whole pipe) while R for 
the bumps may be small (both rbump and vwall are small). This is very typical of flows; 
turbulence on large scales accompanied by smooth laminar flow on small scales.  

Implications of scale dependence 
 
The scale dependence (the dependence on L) in the Reynold’s number shows that what 
we will see depends on what we look at. Let’s consider some large and small things. 
 
Consider a falling dust particle: ρ=1.3kg/m3, v=0.001m/s, L=0.0001m, η=1.8x10-5 Nsm-2 
So R = 1.3(0.001)(0.0001)/1.8x10-5 = 0.007. This means a falling dust grain is in the 
viscous regime and will always experience the small-slow kind of friction. 
 
Redoing this for a falling raindrop: 
 ρ=1.3kg/m3, v=0.1m/s, L=0.005m, η=1.8x10-5Nsm-2 
we get 
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 R = 50 
Here the motion is dominated by the inertia of the drop, but affected still by the friction 
which is involved in moving the air out of the way. 
 
Redoing this for a falling person 
 ρ=1.3kg/m3, v=30m/s, L=2m, η=1.8x10-5Nsm-2 
we get 
 R = 4.3x106 
Here the motion is completely dominated by the inertia of the fluid. The fact that there is 
viscosity, that there is fluid friction, is really not important. 

 
R describes the quality of the flow around an object. So if you want to model a flow, by 
placing a model in a wind tunnel for example, you have to do it with the same R as you 
would have in the real system. This means that if you use a 1/10 scale model (L becomes 
L/10) you have to somehow compensate for this in your test, perhaps by going 10x faster. 
This presents real problems for the testing of aircraft, as going 10x faster would usually 
require traveling faster than sound. Other problems occur when you try to blast air over a 
model at speed greater than the speed of sound. 

Life at large and small Reynolds’ number 
 

People live in a world where R is large; v is big, η is small, L is large, etc. So we usually 
are not dominated by viscosity. As a result, we also live in a world where turbulent 
mixing is easy to achieve. If we want to mix cream into our coffee uniformly we just do 
it. With no special effort we can make the uniformly smooth liquid we so enjoy. 
 
Bacteria, on the other hand, live in a world totally dominated by viscosity. Their speed v 
is small, and size L is small, so they’re always in the viscous dominated, low Reynolds’ 
number regime. Every time such a creature stops pushing for forward motion, it 
immediately stops moving. This is a world in which F ∝ v, rather than F ∝ a. It’s an 
Aristotelian world in which you have to have a forward force constantly to have motion. 
As soon as it disappears you stop. 
 
In addition, the fluid in the world of low Reynolds’ number does not mix. Since it flows 
only laminarly, it never gets the kind of turbulent mixing that allows cream to mix into 
your coffee. This is very important if you're a bacteria hoping that a little food will come 
your way; basically it won't. 
 
Reynold's number and terminal velocity 
 
Earlier in the term we learned that for a large object moving through a fluid the frictional 
resistance is given by: 
 
 Drag = 1/2CρAv2 
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Where C is a property of the shape of the object, and A is its area. This is approximately 
true for most large objects, moving in low viscosity air. This is basically saying that the 
Reynolds’ number for the motion must be large.  
 
What happens in the small Reynold's number case? In this case drag is given by Stokes 
law: 
 
 Drag = 12πηDv 
 
This is quite different. It depends on the diameter of the object D, not on its area A, and 
on v, not on v2. This is because this drag is dominated by fluid friction, rather than by 
fluid inertia. Note too that viscosity shows up here, because it matters. 
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