The side view of a pipe is shown. The pipe diameter increases and then remains constant. P_i is the pressure, and v_i is the speed of a non-viscous incompressible fluid, at locations i = 1,2,3. Choices: Greater than, Less than, Equal to. - A. v_2 is v_1 . - B. P_2 is P_1 . - C. P_3 is P_2 . - D. v_3 is v_2 . ## Tries 0/99 | Answer
for Part:
0 | Less thanGreater thanGreater thanEqual to | |--------------------------|--| |--------------------------|--| Water is flowing in a straight horizontal pipe of variable cross section. Where the cross-sectional area of the pipe is $2.50 \cdot 10^{-2}$ m², the pressure is $10.90 \cdot 10^{5}$ Pa and the velocity is 0.460 m/s. In a constricted region where the area is $15.50 \cdot 10^{-4}$ m², what is the velocity? ## Tries 0/99 What is the pressure (in Pa)? (Assume an ideal fluid) ## Tries 0/99 | Answer
for Part:
11 | • 7.42
[7.34516129032258
7.49354838709678]
Sig 0 - 15
• Unit: m/s | |---------------------------|---| | Answer
for Part:
13 | • 1.06E+06
[1051956.56301977
1073208.21075755]
Sig 0 - 15 | Printed from LON-CAPA@MSU Licensed under GNU General Public License $$P_{2} = P_{1} + \frac{1}{2}P(V_{1}^{2} - V_{2}^{2})$$ $$= 10.9 \times 10^{2} R_{2} + \frac{1}{2}1000 kg \times \frac{7}{2} + \frac{7}{2}1000 \frac{7}{2}10000 kg \times \frac{7}{2} + \frac{7}{2}1000 \frac{7}{2}$$