
The side view of a pipe is shown. The pipe diameter increases and then remains constant. P_i is the pressure, and v_i is the speed of a non-viscous incompressible fluid, at locations i = 1,2,3.

Choices: Greater than, Less than, Equal to.

- A. v_2 is v_1 .
- B. P_2 is P_1 .
- C. P_3 is P_2 .
- D. v_3 is v_2 .

Tries 0/99

Answer for Part: 0	Less thanGreater thanGreater thanEqual to
--------------------------	--

Water is flowing in a straight horizontal pipe of variable cross section. Where the cross-sectional area of the pipe is $2.50 \cdot 10^{-2}$ m², the pressure is $10.90 \cdot 10^{5}$ Pa and the velocity is 0.460 m/s. In a constricted region where the area is $15.50 \cdot 10^{-4}$ m², what is the velocity?

Tries 0/99

What is the pressure (in Pa)? (Assume an ideal fluid)

Tries 0/99

Answer for Part: 11	• 7.42 [7.34516129032258 7.49354838709678] Sig 0 - 15 • Unit: m/s
Answer for Part: 13	• 1.06E+06 [1051956.56301977 1073208.21075755] Sig 0 - 15

Printed from LON-CAPA@MSU

Licensed under GNU General Public License

$$P_{2} = P_{1} + \frac{1}{2}P(V_{1}^{2} - V_{2}^{2})$$

$$= 10.9 \times 10^{2} R_{2} + \frac{1}{2}1000 kg \times \frac{7}{2} + \frac{7}{2}1000 kg \times \frac{7}{2} + \frac{7}{2}10000 kg \times \frac{7}{2} + \frac{7}{2}1000 kg \times \frac{7}{2}$$