1 pt
Instructions:

The exam has 19 problems in three parts. The students in section 10 are required to do the first and second parts while the students in section 11 are required to do the second and third parts. Any problems done in a part that is not required of your section will count for extra credit. Good luck with the exam!

Part one (Section 10 must do these for credit, section 11 may work them for extra credit):
$1 p t$ The pV diagram is shown for a heat engine. The heat flow for two of the stages is shown in the figure. The horizontal axis is scaled in units of $\mathrm{V}=400 \mathrm{~cm}^{3}$ and the vertical axis is scaled in units of $p=200 \mathrm{kPa}$. Find the heat extracted from the hot reservoir for this heat engine.

(in J)
$1 p t$ Find the efficiency of the heat engine.

$$
\begin{array}{rlll}
\mathbf{3 . A} \bigcirc 0.116 & \mathbf{B} \bigcirc 0.155 & \mathbf{C} \bigcirc 0.206 & \mathbf{D} \bigcirc 0.273 \\
\mathbf{E} \bigcirc & 0.364 & &
\end{array}
$$

1 pt A Carnot refrigerator with coefficient of performance K is run backwards as a Carnot heat engine. What is the heat engine's efficiency η in terms of the refrigerator's K value?
4. $\mathbf{A} \bigcirc \eta=1 / \mathrm{K}$
$\mathbf{B} \bigcirc \eta=1 /(\mathrm{K}+1)$
$\mathbf{C} \bigcirc \eta=\mathrm{K} /(\mathrm{K}+1)$
$\mathbf{D} \bigcirc=(\mathrm{K}-1) / 2$
$\mathbf{E} \bigcirc \eta=1 /(\mathrm{K}-1)$

1 pt A hollow cylinder is rolling without slipping on a flat surface. Due to its motion, it has translational and rotational kinetic energy. What percentage of its total kinetic energy is due to rotational kinetic energy? (in percent)

$\mathbf{5 . A} \bigcirc 28.6$	$\mathbf{B} \bigcirc 30.0$	$\mathbf{C} \bigcirc 33.3$	$\mathbf{D} \bigcirc 45.7$
$\mathbf{E} \bigcirc 50.0$			

$1 p t$

Part two (Sections 10 and 11 must do these for credit):
$1 p t$ A diver is 76 m deep in a mountain lake, where the temperature at this depth is $9^{\circ} \mathrm{C}$. While he is down there, the air bubbles that he exhales have a diameter of 1.9 cm . The bubbles rise to the surface of the lake, where the ambient temperature is $21^{\circ} \mathrm{C}$. What is the diameter of the air bubbles when they reach the surface of the lake? You may assume that the bubbles are in thermal equilibrium with the water surrounding them. (in cm)

$$
\begin{array}{r}
\mathbf{7 . A} \bigcirc 2.09 \\
\mathbf{E} \bigcirc 3.91
\end{array} \quad \mathbf{B} \bigcirc 2.44 \quad \mathbf{C} \bigcirc 2.86 \quad \mathbf{D} \bigcirc 3.34
$$

1 pt At a dull formal banquet one evening, you get served a watery flavorless soup with little meatballs floating on the surface. You decide to amuse yourself by adding more and more salt to the soup, thus increasing the density of the soup. What will the meatballs do?
8. $\mathbf{A} \bigcirc$ they will sink to the bottom of the soup bowl $\mathbf{B} \bigcirc$ they will float lower in the liquid, but not sink to the bottom
$\mathbf{C} \bigcirc$ they will stay at the same level in the liquid
$\mathbf{D} \bigcirc$ they will float higher in the liquid

1 pt The after-dinner speech is especially boring, so you continue to look for amusement. When the speech begins, you add several ice cubes from your drink to your soup, and you note the liquid level in the bowl. At the end of the long speech, all of the ice has melted. Compared to the liquid level after you initially added the ice cubes, the liquid level in the bowl is now:
9. $\mathbf{A} \bigcirc$ higher
$\mathbf{B} \bigcirc$ the same height
$\mathbf{C} \bigcirc$ lower
$1 p t$ Gas is flowing through a horizontal pipe, but you cannot see inside the pipe to know how the inner diameter changes. Your only indication of what is going on is the vertical columns of liquid that are connected to the pipe with the flowing gas. Which of the following statements are true?

\triangleright the diameter of the pipe is larger at point A than at point C
10. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright the gas speed is slowest at point B
11. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright for the gas at points C and B the volume flow rate is the same
12. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
Δ the diameter of the pipe is largest at point B
13. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright the pressure in the pipe is highest at point C
14. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False

1 pt A lead bullet (mass $=29 \mathrm{~g}$) is shot from a rifle at a temperature of $51^{\circ} \mathrm{C}$ and travels at a speed of $550 \mathrm{~m} / \mathrm{s}$ until it hits a large block of ice at $0^{\circ} \mathrm{C}$ and comes to rest within it. How much ice will melt? (in g)
$\mathbf{1 5 . A} \bigcirc 7.01$
$\mathbf{B} \bigcirc 8.77$10.96
$\mathbf{D} 13.70$
$\mathbf{E} \bigcirc 17.12$

1 pt The graph below shows the temperature vs. supplied heat for a liquid that is heated from $20^{\circ} \mathrm{C}$ up through evaporation. The mass of the liquid is 65 grams. Note that the x-axis (supplied heat) is in units of kJ . At what temperature does the liquid evaporate?

16. $\mathbf{A} \bigcirc 140^{\circ} \mathrm{C}$

B $90^{\circ} \mathrm{C}$
$\mathbf{C} \bigcirc 60^{\circ} \mathrm{C}$
D $40^{\circ} \mathrm{C}$
$\mathbf{E} \bigcirc$ cannot be determined from information given

1 pt What is the latent heat of vaporization for this substance? (in J / kg)
$\begin{array}{rll}\mathbf{1 7 . A} \bigcirc 6.18 \times 10^{4} & \mathbf{B} \bigcirc 7.23 \times 10^{4} & \mathbf{C} \bigcirc 8.46 \times 10^{4} \\ \mathbf{D} \bigcirc 9.90 \times 10^{4} & \mathbf{E} \bigcirc 1.16 \times 10^{5} & \end{array}$

1 pt What is the specific heat of the liquid phase of this substance? (in $\mathrm{J} /(\mathrm{kg} * \mathrm{~K})$)

$$
\mathbf{1 8 . A} \bigcirc 1923 \quad \mathbf{B} \bigcirc 2404 \quad \mathbf{C} \bigcirc 3005 \quad \mathbf{D} \bigcirc 3756 \quad \mathbf{E} \bigcirc 4695
$$

Material	Density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
wood	600
water	1000
aluminum	2700
steel	7800
lead	11300
gold	19300

$1 p t$
Several solid blocks made of different materials (wood, aluminum, steel, lead and gold) are placed in a tub of water. The densities of these materials are given above. All of the blocks have the same volume. The blocks are released and allowed to reach some equilibrium position (that is, some may sink and some may float). Which of the following statements are true?
\triangleright The metal blocks all experience an equal buoyant force
19. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright The steel block displaces more water than the wood block
20. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright The gold block has the smallest mass
21. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright The steel block experiences a smaller buoyant force than the wood block
22. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright The wood block experiences the greatest buoyant force
23. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False

1 pt A typical pV cycle is shown in the figure. State whether the indicated quantity $\left(\Delta \mathrm{E}_{\mathrm{th}}, \mathrm{W}_{\mathrm{s}}\right.$ or Q$)$ increases $(+)$, decreases (-) or stays the same (0) for the specified stage of the

$\triangleright \Delta \mathrm{E}_{\text {th }}$ during Stage A
24. $\mathbf{A} \bigcirc$ increases $(+) \quad \mathbf{B} \bigcirc$ decreases (-) $\mathbf{C} \bigcirc$ stays the same (0)
$\triangleright \mathrm{W}_{\mathrm{s}}$ during Stage D
25. A \bigcirc increases $(+) \quad \mathbf{B} \bigcirc$ decreases (-) $\mathbf{C} \bigcirc$ stays the same (0)
$\triangleright \Delta \mathrm{E}_{\text {th }}$ during Stage B
26. $\mathbf{A} \bigcirc$ increases $(+) \quad \mathbf{B} \bigcirc$ decreases (-) $\mathbf{C} \bigcirc$ stays the same (0)
\triangleright Q during Stage B
27. $\mathbf{A} \bigcirc$ increases $(+) \quad \mathbf{B} \bigcirc$ decreases (-) $\mathbf{C} \bigcirc$ stays the same (0)
$\triangleright \Delta \mathrm{E}_{\text {th }}$ during Stage C
28. $\mathbf{A} \bigcirc$ increases (+) $\mathbf{B} \bigcirc$ decreases (-) $\mathbf{C} \bigcirc$ stays the same (0)

29. $\mathbf{A} \bigcirc$ curve A is argon $\mathbf{B} \bigcirc$ curve A is neon

1 pt If the rms speed of the argon atoms is $420 \mathrm{~m} / \mathrm{s}$ based on the above distribution, what is the rms speed of the neon atoms? (in m/s)

$$
\mathbf{3 0 . A} \bigcirc 242 \quad \mathbf{B} \bigcirc 302 \quad \mathbf{C} \bigcirc 378 \quad \mathbf{D} \bigcirc 472 \quad \mathbf{E} \bigcirc 590
$$

$1 p t$ What is the temperature of the gas? (in K)
$\mathbf{3 1 . A} \bigcirc 212 \quad \mathbf{B} \bigcirc 282 \quad \mathbf{C} \bigcirc 375 \quad \mathbf{D} \bigcirc 499 \quad \mathbf{E} \bigcirc 664$

1 pt A sign for Joe's Gym is hanging from the end of a horizontal beam, which itself is suspended by a cable attached to the wall. The beam has length L and mass M. The sign has mass m . Which of the following is the correct expression for

32. $\mathbf{A} \bigcirc(\mathrm{mg} / 2-\mathrm{Mg} / 2) / \tan \theta$
$\mathbf{B} \bigcirc(\mathrm{mg}+\mathrm{Mg} / 2) / \sin \theta$
$\mathbf{C} \bigcirc(\mathrm{mg}+\mathrm{Mg}) \cdot \cos \theta$
$\mathbf{D} \bigcirc(\mathrm{mg}+\mathrm{Mg} / 2) \cdot \sin \theta$
$\mathbf{E} \bigcirc(\mathrm{mg}-\mathrm{Mg} / 2) / \sin \theta$

1 pt If it starts at a certain height, which one of the following statements is true?
33. $\mathbf{A} \bigcirc$ The time it takes to arrive at the bottom is independent of the mass of the block.
$\mathbf{B} \bigcirc$ The larger the mass of the block, the sooner it will arrive at the bottom.
$\mathbf{C} \bigcirc$ The larger the mass of the block, the longer it will take for it to arrive at the bottom.

1 pt Which one of the following equations describes its motion in x-direction?
34. $\mathbf{A} \bigcirc$

$$
\frac{d^{2} x}{d t^{2}}=m g \sin \theta-\mu_{k} \cos \theta
$$

$\mathbf{B} \bigcirc \quad \frac{d^{2} x}{d t^{2}}=g \cos \theta-g \mu_{k} \sin \theta$
$\mathbf{C} \bigcirc \quad \frac{d^{2} x}{d t^{2}}=g\left(\sin \theta-\mu_{k} \cos \theta\right)$
$\mathbf{D} \bigcirc \frac{d^{2} x}{d t^{2}}=g\left(\sin \theta+\mu_{k} \cos \theta\right)$
$\mathbf{E} \bigcirc \quad m \frac{d^{2} x}{d t^{2}}=m g \sin \theta-\mu_{k} \cos \theta$
$1 p t$ Which of the following statements are true regarding force and torque?
35. $\mathbf{A} \bigcirc$ The net force being zero does not imply that the net torque must be zero.
$\mathbf{B} \bigcirc$ Both the net force and the net torque on an object must always be zero.
$\mathbf{C} \bigcirc$ If the net force on an object is zero, the net torque must also be zero.
$\mathbf{D} \bigcirc$ If the net torque on an object is zero, the net force must also be zero.
$\mathbf{E} \bigcirc$ Neither the net force nor the net torque on an object is ever zero.

1 pt Due never A 64.3 kg adult sits at one end of a 11.4 m board, on the other end of which sits his 29.9 kg child. How far away from the adult should the pivot be placed so the board (ignore its mass) is balanced?
(in m)
36.A $\bigcirc 1.19 \quad \mathbf{B} \bigcirc 1.72 \quad \mathbf{C} \bigcirc 2.50 \quad \mathbf{D} \bigcirc 3.62$

1 pt
Consider two types of molecules A and B. Assume you have a container consisting of two chambers in which molecules are allowed to pass freely between chambers. Given that you have two of each type of molecule in your container, and each molecule can have four independent positions in either the left chamber or right chamber, how many distinct states are there if one only distinguishes states based on the number and type of molecule in each chamber?

$$
\begin{array}{rlll}
\mathbf{4 3 . A} \bigcirc 9.0 & \mathbf{B} \bigcirc 13.1 & \mathbf{C} \bigcirc 18.9 & \mathbf{D} \bigcirc 27.4 \\
\mathbf{E} \bigcirc 39.8 & & &
\end{array}
$$

1 pt What is the most likely state? (EXAMPLE RESPONSE LAABRA stands for 2 A molecules and 1 B molecule in the left chamber and 1 A molecule in the right chamber. Answer MUST be in all capital letters.)

44. Leave blank on scoring form
$1 p t$ What is one of the two most unlikely states?
\square
45. Leave blank on scoring form

1 pt What is the probability that when one observes the state of the container, it is seen to be in the most likely state?

$\mathbf{4 6 . A} \bigcirc 0.1755$	$\mathbf{B} \bigcirc 0.2194$	$\mathbf{C} \bigcirc 0.2743$	
$\mathbf{D} \bigcirc 0.3429$	$\mathbf{E} \bigcirc 0.4286$		

$1 p t$ What's the probability that when a coin is flipped it is

$\mathbf{4 7 . A} \bigcirc 0.3916$	$\mathbf{B} \bigcirc 0.4425$	$\mathbf{C} \bigcirc 0.5000$	
$\mathbf{D} \bigcirc 0.5650$	$\mathbf{E} \bigcirc 0.6384$		

1 pt Let a state be defined as the number of heads and tails. How many different states are there when 2 coins are flipped?

| $\mathbf{4 8} . \mathbf{A} \bigcirc 3$ | $\mathbf{B} \bigcirc 4.3500$ | $\mathbf{C} \bigcirc 6.3075$ |
| ---: | :--- | :--- | :--- |
| $\mathbf{D} \bigcirc 9.1459$ | $\mathbf{E} \bigcirc 13.2615$ | |

1 pt If one flips 2 coins how many combinations are there when both are heads? >

49.A $\bigcirc 0.8547$	$\mathbf{B} \bigcirc 1$	$\mathbf{C} \bigcirc 1.1700$	
$\mathbf{D} \bigcirc 1.3689$	$\mathbf{E} \bigcirc 1.6016$		

$>$ both are tails? >

$\mathbf{5 0 . A} \bigcirc 0.4096$	$\mathbf{B} \bigcirc 0.5120$	$\mathbf{C} \bigcirc 0.6400$	
$\mathbf{D} \bigcirc 0.8000$	$\mathbf{E} \bigcirc 1$		

$>$ one heads and one tails? >
51.A $\bigcirc 2$
$\mathbf{B} \bigcirc 2.2600$
$\mathbf{C} \bigcirc 2.5538$
$\mathbf{D} \bigcirc 2.8858$
$\mathbf{E} \bigcirc 3.2609$
$1 p t$ When 2 coins are flipped what is the total number of combinations? >

$$
\begin{array}{rll}
\mathbf{5 2 . A} \bigcirc 2.9221 & \mathbf{B} \bigcirc 3.4188 & \mathbf{C} \bigcirc 4 \\
\mathbf{D} \bigcirc 4.6800 & \mathbf{E} \bigcirc 5.4756 &
\end{array}
$$

$1 p t$ If one flips 2 coins what is the probability that both are heads? >

$\mathbf{5 3 . A} \bigcirc 0.1826$	$\mathbf{B} \bigcirc 0.2137$	$\mathbf{C} \bigcirc 0.2500$	
$\mathbf{D} \bigcirc 0.2925$	$\mathbf{E} \bigcirc 0.3422$		

$>$ both are tails? >

$\mathbf{5 4 . A} \bigcirc 0.2500$	$\mathbf{B} \bigcirc 0.2825$	$\mathbf{C} \bigcirc 0.3192$	
$\mathbf{D} \bigcirc 0.3607$	$\mathbf{E} \bigcirc 0.4076$		

> one heads and one tails? >

| $\mathbf{5 5 . A} \bigcirc 0.1640$ | $\mathbf{B} \bigcirc 0.2378$ | $\mathbf{C} \bigcirc 0.3448$ |
| ---: | :--- | :--- | :--- |
| $\mathbf{D} \bigcirc 0.5000$ | $\mathbf{E} \bigcirc 0.7250$ | |

1 pt Bacteria use swimming to seek out places where food is more plentiful, i.e. where the concentration of food molecules is larger. Imagine that the bacterium is in a region of low food concentration. For the bacterium to profit from swimming to a region with more food, it has to get there before diffusion of food molecules makes the concentrations in the two regions the same. For an E. coli swimming at a speed of $26 \mu \mathrm{~m} / \mathrm{s}$, how far will the bacterium swim in 2 seconds? (in um)

$$
\begin{array}{rlll}
\mathbf{5 6 . A} \bigcirc 22.10 & \mathbf{B} \bigcirc 29.40 & \mathbf{C} \bigcirc 39.10 & \mathbf{D} \bigcirc 52.00 \\
\mathbf{E} \bigcirc 69.16 & & &
\end{array}
$$

$1 p t$ If the diffusion constant (D) of a typical food molecule is $1 \mu \mathrm{~m}^{2} / \mathrm{ms}$, how far will the food diffuse in 2 seconds? (in um)

| $\mathbf{5 7 . A} \bigcirc 63.25$ | $\mathbf{B} \bigcirc 74.00$ | $\mathbf{C} \bigcirc 86.58$ |
| ---: | :--- | :--- | :--- |
| $\mathbf{D} \bigcirc 101.29$ | $\mathbf{E} \bigcirc 118.52$ | |

1 pt Now we will find the distance that the bacterium needs to swim before it outruns its food. What time will the distance swum be the same as the distance that the food diffuses? (in s)

$$
\begin{array}{rl}
\mathbf{5 8 . A} \bigcirc 2.96 \times 10^{-3} & \mathbf{B} \bigcirc 3.34 \times 10^{-3} \\
\mathbf{D} \bigcirc 4.27 \times 10^{-3} & \mathbf{E} \bigcirc 4.82 \times 10^{-3}
\end{array}
$$

1 pt How far will the bacterium swim in that time? (in um)

$$
\begin{array}{rlll}
\mathbf{5 9 . A} \bigcirc 4.11 \times 10^{-2} & \mathbf{B} \bigcirc 4.80 \times 10^{-2} & \mathbf{C} \bigcirc 5.62 \times 10^{-2} \\
\mathbf{D} \bigcirc 6.57 \times 10^{-2} & \mathbf{E} \bigcirc & 7.69 \times 10^{-2} &
\end{array}
$$

