

First things first
 You need to know some numbers

You need to know how big things are

- Macromolecules (DNA, proteins, lipids) are about 1 nm in diameter
- Bacteria and ecoli are about $1 \mu \mathrm{~m}$ in size
- Eukaryotic cells (those with a nucleus) are about $100 \mu \mathrm{~m}$ in size
- Water has density $1 \mathrm{~g} / \mathrm{cm}^{3}=1 \mathrm{~g} / \mathrm{ml}$
- 1 Dalton = 1Da = mass of 1 hydrogen atom = $1 \mathrm{amu}=1.67 \times 10^{-27} \mathrm{~kg}$
- 1 mole $=6 \times 10^{23}$ things
- See next slide for more

You need to know the prefixes ... memorize these!

- femto $=\mathrm{f}_{-}=10^{-15}$
- pico $=p_{-}=10^{-12}$
- Nano $=\mathbf{n}_{-}=10^{-9}$
- micro $=\mu_{-}=10^{-6}$
- milli $=m=10^{-3}$
- nothing $=\quad=10^{\circ}$
- kilo = k_= $\mathbf{1 0}^{\mathbf{3}}$
. m_ = mg, mm, ml, etc.
Phys 21: chap 1, Pg 3

Some sizes

	Quantity of interest	Symbol	Rule of thumb
E. coll	Cell volume	$V_{\text {E.colt }}$	$s=1 \mu^{3}$
	Cell mass	$m_{\text {E.coil }}$	$\approx 1 \mathrm{pg}$
	Cell cycle	$t_{\text {E.coll }}$	23000 5
	Cell area	$A_{E} \text { colt }$	$2=6 \mathrm{~mm}^{2}$
	Genome length		$\pm 5 \times 10^{6} \mathrm{bp}$
	Swimming speed	$v_{\text {E.colf }}$	$\approx 20 \mu \mathrm{~m} / \mathrm{s}$
Yeast	Volume of cell	$v_{\text {yeast }}$	$=60 \mu \mathrm{~m}^{3}$
	Mass of cell	$m_{\text {yeast }}$	$s=60 \mathrm{pg}$
	Diameter of cell	$d_{\text {y y ast }}$	$25 \mu \mathrm{~m}$
	Cell cycle time	$t_{\text {yeast }}$	$\approx 200 \mathrm{~min}$
	Genome length	$\mathrm{N}_{\mathrm{bp}}^{\text {yeast }}$	$\approx 10^{7} \mathrm{bp}$
Organelles	Dlameter of nucleus	$d_{\text {nucleus }}$	$\approx 5 \mu \mathrm{~m}$
	Length of mittochondrion	$I_{\text {mino }}$	$\approx 2 \mu \mathrm{~m}$
	Dlameter of transport vesicles	$d_{\text {vesicle }}$	2050 nm
Water	volume of molecule	$V_{\mathrm{H}_{2} \mathrm{O}}$	$\cong 10^{-2} \mathrm{~nm}^{3}$
	Density of water	ρ	$1 \mathrm{~g} / \mathrm{cm}^{3}$
	VIscosity of water	η	≈ 1 centipolse ($10^{-2} \mathrm{~g} /(\mathrm{cm} \mathrm{s})$)
	Hydrophobic embedding energy	$s E_{\text {hydr }}$	$25 \mathrm{cal} /\left(\mathrm{mol} \mathrm{A}{ }^{2}\right)$
DNA	Length per base pair	$I_{b p}$	$\pi 1 / 3 \mathrm{~nm}$
	volume per base palr	$v_{b p}$	$91 \mathrm{~nm}^{3}$
	Charge density	$\lambda_{\text {dw }}$	$2 \mathrm{e} / 0.34 \mathrm{~nm}$
	Persistence length	${ }_{5 P}{ }^{\text {P }}$	50 nm
Amino acids and protelins	Radius of "average" proteln	${ }_{\text {protein }}$	$\therefore 2 \mathrm{~nm}$
	volume of "average" proteln	$v_{\text {protein }}$	$\approx 25 \mathrm{~nm}^{3}$
	Mass of "average" amino acid	Maa	$\approx 100 \mathrm{Da}$
	Mass of "average" proteln	$M_{\text {protein }}$	\%30,000 Da
	Proteln concentration in cytoplasm	$c_{\text {protein }}$	$\approx 300 \mathrm{mg} / \mathrm{ml}$
	Characteristic force of proteln motor	$F_{\text {motor }}$	$\approx 5 \mathrm{pN}$
	Characteristic speed of proteln motor	$v_{\text {motar }}$	\%200nm/s
	Diffuslon constant of "average" proteln	$D_{\text {protein }}$	$\approx 100 \mu \mathrm{~m}^{2} / \mathrm{s}$
Lipld bilayers	Thickness of lipid bilayer	d	$\pm 5 \mathrm{~nm}$
	Area per molecule	Alipld	$=\frac{1}{2} \mathrm{~nm}^{2}$
	Mass of lipld molecule	$m_{\text {dipld }}$	$\approx 800 \mathrm{Da}$

Cells - Molecular cities Lots of things are going on

Organelles - Molecular factories

Macromolecules

"The two great polymer languages..." F. Crick

DNA

(A)
(B)

Small molecules

Hierarchy of temporal scales

ConcepTest 2.1a

How heavy is it

What is the mass of a gallon of milk?

1. 1 kg
2. 5 kg
3. 25 kg
4. 100 kg
5. 1000 kg

ConcepTest 2.1a

How heavy is it

What is the mass of a gallon milk?

1. 1 kg

2. 25 kg
3. 100 kg
4. 1000 kg

A pint's a pound the world around - from my
mom. 1 gal $=4$ quarts $=8$ pints $\rightarrow 8 \mathrm{lbs}=5 \mathrm{~kg}$

ConcepTest 2.2a

How heavy is it

Your aquarium is $1 \mathrm{~m}^{3} \ldots$ you must

1. 10 kg
love fish or else be a doctor. How
2. 100 kg
3. 1000 kg
4. 10000 kg
5. $100,000 \mathrm{~kg}$ water

Ponderable

You are thinking about transferring to another university, but your parents are not very supportive. How many days will it take to walk from GW to the University of Chicago?

You need some idea of how things work

To stay sane, you need to have a simple model and some simple rules. For example

- Most living things are made of water
- Arms are cylinders, proteins are spheres
- $\mathbf{d}=\mathrm{vt}$
- Things move between 1 and 10 body lengths per second (think Olympic sprinters)
- Things scale, imagine ant-sized olympic sprinters
- Off by a factor of 2 no problem, you are sane
- Off by a factor of 10, big problem, you are insane

What if you are off by a factor of 10 or more?

- Your math is wrong ... No excuse
- Your model makes no sense ... need to study
- Your model is missing something essential ... you may have made a discovery.

Example

What is the mass of your arm?

Ponderable

What is the density of an eColi cell?

