

First things first You need to know some numbers You need to know how big things are Macromolecules (DNA, proteins, lipids) are about 1 nm in diameter Bacteria and ecoli are about 1 µm in size • Eukaryotic cells (those with a nucleus) are about 100 µm in size Water has density 1g/cm³ = 1 g/ml 1 Dalton = 1Da = mass of 1 hydrogen atom = 1 amu = 1.67 x 10⁻²⁷ kg 1 mole = 6×10^{23} things See next slide for more femto = f_ = 10⁻¹⁵ pico = p_{-12} = 10⁻¹² Nano = n_ = 10⁻⁹ micro = μ_{-} = 10⁻⁶ milli = m_ = 10⁻³ nothing = = = 10^o kilo = $k_{-} = 10^{3}$

• m_ = mg, mm, ml, etc.

Phys 21: chap 1, Pg 3

	Some sizes		
	Quantity of Interest	Symbol	Rule of thumb
E. coli	Cell volume Cell mass Cell cycle Cell area Genome length Swimming speed	V _{E.coli} m _{E.coli} t _{E.coli} A _{E.coli} N ^{E.coli} bp V _{E.coli}	≈1 μm ³ ≈1 pg ≈3000 s ≈6 μm ² ≈5 × 10 ⁶ bp ≈20 μ m/s
Yeast	Volume of cell Mass of cell Diameter of cell Cell cycle time Genome length	Vyeast Myeast dyeast tyeast Nyeast Nyeast bp	∞60µm ³ ∞60pg ∞5µm ∞200min ∞10 ⁷ bp
Organelles	Dlameter of nucleus Length of mitochondrion Dlameter of transport vesicles	d _{nucleus} I _{mito} d _{vesicle}	≈5μm ≈2μm ≈50nm
Water	Volume of molecule Density of water Viscosity of water Hydrophobic embedding energy	V _{H2} O ρ η ≈Ehvdr	$\approx 10^{-2} \text{ nm}^3$ 1 g/cm ³ ≈ 1 centipoise (10 ⁻² g/(cm s)) 25 cal/(mol A ²)
DNA	Length per base pair Volume per base pair Charge density Persistence length	l _{bp} V _{bp} λ _{DNA} ξ _P	≈1/3 nm ≈1 nm ³ 2 e/0.34 nm 50 nm
Amino acids and proteins	Radius of "average" protein Volume of "average" protein Mass of "average" amino acid Mass of "average" protein Protein concentration in cytoplasm Characteristic force of protein motor Characteristic speed of protein motor Diffusion constant of "average" protein	Fprotein Vprotein Maa Mprotein Cprotein Fmotor Vmotor Dprotein	≈2 nm ≈25 nm ³ ≈100 Da ≈30,000 Da ≈300 mg/ml ≈5 pN ≈200 nm/s ≈100 μm ² /s
Lipid bilayers	Thickness of lipid bilayer Area per molecule Mass of lipid molecule	d A _{ltpid} m _{ltpid}	≈5 nm ≈ 1 2 nm ² ≈800 Da

ConcepTest 2.1a	How heavy is it
What is the mass of a gallon of milk?	1. 1 kg 2. 5 kg 3. 25 kg 4. 100 kg 5. 1000 kg
	Phys 21: chap 1, Pg 20

You need some idea of how things work

es. For example Most living things are made of water

- Arms are cylinders, proteins are spheres •
- d = vt
- Things move between 1 and 10 body lengths per second (think Olympic sprinters)
- Things scale, imagine ant-sized olympic sprinters
- Off by a factor of 2 no problem, you are sane •
- Off by a factor of 10, big problem, you are insane •
- What if you are off by a factor of 10 or more? Your math is wrong ... No excuse
- Your model makes no sense ... need to study •
- Your model is missing something essential ... you may have made a discovery.

Phys 21: chap 1, Pg 26

