

Standard deviations: example

Going back to the game of dice, what is the standard deviation for the average value calculated previously:

There are 6 possible values, and each has equal probability, 1/6. We modify the earlier table:

	S (score)	Ps	s²P _s		
The We get a	1	1/6	1/6		
	2	1/6	4/6		
	3	1/6	9/6		
	4	1/6	16/6	ood chance to	
	5	1/6	25/6		
	6	1/6	36/6		
	Sums	1	91/6=15.2		

Calculating expectation values: 2nd example

Let's give values to certain colors of balls: B = 4, R = 2, G = 1, V = 0. What is the probability to get a total score of 4, if we have 4 boxes of balls?

Think about the probability to get 4, we can only have 4G, 1B3V, 2R2V, or 1R2G1V.

$$\begin{split} & \mathsf{W}_4 = \mathsf{W}_{4\mathrm{G}} + \mathsf{W}_{1\mathrm{B}} + \mathsf{W}_{2\mathrm{R}} + \mathsf{W}_{1\mathrm{R}2\mathrm{G}} \\ &= 4!/4! + 4!/1!3! + 4!/2!2! + 4!/2! = 1 + 4 + 6 + 12 = 23 \\ & \mathsf{P}_4 = \mathsf{W}_4/4^4 = 0.090 = 9\% \\ & \mathsf{Now}, \,\mathsf{what} \, \mathsf{are} \, 17 \, \mathsf{possible} \, \mathsf{scores}, \, 0, \, 1, \, 2, \, 3, \, \ldots, \, 14, \, 15, \, 16 \\ & \mathsf{We} \, \mathsf{have} \, \mathsf{to} \, \mathsf{calculate} \, \mathsf{P} \, \mathsf{for} \, \mathsf{each}, \, \mathsf{multiply} \, \mathsf{P} \, \mathsf{by} \, \mathsf{the} \, \mathsf{score} \, \mathsf{and} \, \mathsf{add} \, \mathsf{them} \, \mathsf{all} \\ & \mathsf{up}. \, 4\mathsf{P}_4 = 4(.09) = .36, \, 16\mathsf{P}_{16} = 16(1/4^4), \, \mathsf{OP}_0 = 0, \, 1\mathsf{P}_1 = 1(4/4^4) = 0.016 \\ & \ldots \, \, \mathsf{See} \, \mathsf{next} \, \mathsf{slide} \end{split}$$

PHYS 11: Chap. 18, Pg 3

Calculating expectation values: example continued

It is easiest to make a table at this point:

Score (s)	Ps	sP _s	Score (s)	Ps	sP _s
1	4/44	1/64	9		
2			10		
3			11		
4	23/44	23/64	12	10/44	30/64
5	24/44	30/64	13		
6			14	4/44	14/64
7			15	0	0
8			16	1/44	1/16

$$\begin{split} & W_{12} = W_{3B1V} + W_{2B2G} = 4 + 6 = 10 \\ & W_5 = W_{1B1G2V} + W_{2R1G1V} = 12 + 12 = 24 \\ & \text{Add up all 16 values of sP}_{s} \text{ (the 17^{th} value 0P_0 = 0) to get <s>} \end{split}$$

PHYS 11: Chap. 18, Pg 4

Ponderable: Flipping coins III

- 1. Think about the distribution of coin flips and their probability. For H assign a value 1, for T, a value of -1. Now considering what you remember about the properties of the distribution (do not perform any calculations or coin flips), predict your score after:
 - 1. 1 flip
 - 2. 2 flips
 - 3. 4 flips
 - 4. 10 flips
 - 5. 100 flips
- 2. Now calculate the standard deviation for the above cases. You may have to calculate this for 1, 2, and 4, but seeing the pattern that is emerging, can you make a reasoned guess for 10 and 100?

PHYS 11: Chap. 18, Pg 5

