

Page 1

Momentum

Momentum is "inertia" of motion
"Quantity of motion"

Inertia depends on mass
Easy to start $\sqrt{5}$

Hard to start

Momentum depends on mass and velocity


```
momentum = mass }\times\mathrm{ velocity
```


Linear Momentum

O Momentum p is defined as:

$$
p=m v
$$

$\Rightarrow p$ is a vector since v is a vector
\Rightarrow units of momentum are $\mathbf{k g}{ }^{*} \mathbf{m} / \mathbf{s}$

How is force related to momentum?
$>$ use Newton's $2^{\text {nd }}$ Law: force is related to the change of momentum

$$
\Sigma \mathrm{F}=\mathrm{ma}=\mathrm{m} \frac{\Delta \mathrm{v}}{\Delta \mathrm{t}}=\frac{\Delta \mathrm{p}}{\Delta \mathrm{t}}=\frac{d \mathrm{p}}{d \mathrm{t}} \quad \Sigma \mathrm{~F}=\frac{d \mathrm{p}}{d \mathrm{t}}
$$

Impulse $=F \Delta t=\Delta p$
Impulse $=$ change in momentum !
Why is it better to have padding?

Page 3

Would you rather land with your legs bending or stiff?
$>$ You will still have the same impulse (Δp) in each case
$>$ But by bending, you extend the interaction time Δt
$>$ So the average force $F_{a v}$ is less if you bend your legs!

PHYS 1021: Chap. 9, Pg 7

Crash Test

Introduction to impulse

- Why impulse instead of force?
- Time-dependent force that is difficult to model

》 But well-defined initial and final states
, Examples:
» Meteor strikes earth
» Bat hits base ball

Impulse and Momentum

Momentum is the product of a particle's mass and velocity, has units of $\mathrm{kg} \mathrm{m} / \mathrm{s}$, and is given by

$$
\text { momentum }=\vec{p}=m \vec{v}
$$

The impulse upon a particle is defined as

$$
\begin{aligned}
\text { impulse } & =J_{x}=\int_{\mathrm{f}}^{\mathrm{t}_{\mathrm{t}}} F_{x}(t) d t \\
& =\text { area under the } F_{x}(t) \text { curve between } t_{\mathrm{i}} \text { and } t_{\mathrm{f}}
\end{aligned}
$$

Impulse has units of Ns , but you should be able to show that N s are equivalent to $\mathrm{kg} \mathrm{m} / \mathrm{s}$. The impulsemomentum theorem is

$$
\Delta p_{x}=J_{x} \quad(\text { impulse-momentum theorem })
$$

ConcepTest 9.1 Two Boxes I

Two boxes, one heavier than the other, are initially at rest on a horizontal frictionless surface. The same constant force F acts on each one for one second. Which box has more momentum after the force acts ?

1) the heavier one
2) the lighter one
3) both the same

ConcepTest 9.1 Two Boxes I

Two boxes, one heavier than the other, are initially at rest on a

1) the heavier one horizontal frictionless surface. The same constant force F acts on each one for exactly 1 second.
2) the lighter one
3) both the same

Which box has more momentum after the force acts ?

ConcepTest 9.2 Going Bowling I

A bowling ball and a ping-pong ball are rolling towards you with the same momentum. If you exert the same force to stop each one, which takes a longer time to bring to rest?

1) the bowling ball
2) same time for both
3) the ping-pong ball
4) impossible to say

ConcepTest 9.2 Going Bowling I

A bowling ball and a ping-pong ball are rolling towards you with the same momentum. If you exert the same force to stop each one, which takes a longer time to bring to rest?

1) the bowling ball
2) same time for both
3) the ping-pong ball
4) impossible to say

We know: $\quad F_{a v}=\frac{\Delta p}{\Delta t} \quad$ so $\Delta p=F_{a v} \Delta t$
Here, F and Δp are the same for both balls!
It will take the same amount of time
to stop them.

Example 1

- A 2 kg object is moving to the right (+x) with a speed of $1 \mathrm{~m} / \mathrm{s}$. What is its speed after applying the impulse pictured below?

Ponderable 1

- A 2 kg object is moving to the left (-x) with a speed of $1 \mathrm{~m} / \mathrm{s}$. What is its speed after 1 s of applying the impulse pictured below? After 2 s?

Example 2

- A clay ball is thrown at the ceiling and sticks there. Considering only the momentum immediately before and after the collision, draw momentum - impulse diagram for the collision.

Ponderable 2

- A bouncy ball is thrown at the ceiling and bounces right back. Considering only the momentum immediately before and after the collision, draw momentum - impulse diagram for the collision. Does the bouncy ball or the clay ball exert more force on the ceiling?

Example 3

- A 200 g rubber ball is released from a height of 2.0 m . It falls to the floor, bounces, and rebounds. The force of the floor on the ball
 is shown in the figure. How high does the ball rebound?

Ponderable 3

- A particle of mass m is at rest at $t=0$. It is momentum for $t>0$ is given by $p_{x}=6 t^{2} \mathrm{kgm} / \mathrm{s}$. Find an expression for the force as a function of time.

Tangible - measure the impulse

Every group should get a tennis ball and drop it from a height of 1 m . Determine the impulsive force imparted to the ball by the floor. Try this on carpet and on a hard surface (table top or in the hall). Discuss the difference in the impulsive force between the hard and soft landing cases.

