

Announcements

- This week's homework 2 parts due on Monday last one due tonight
- Today's class:
$>$ Newton's third law
> Pulleys
$>$ Tension
- Circular motion
- Quiz on Friday, Ch 5 and 6
- First exam Weds, Feb 22, Chs 1-8, 6 PM to 8 PM, Funger 108
$>$ Email me if there is a class conflict for you at the exam time

A rider in a "barrel of fun" finds herself stuck with her back to the wall.
Which diagram correctly shows the forces acting on her?

ConcepTest 7.8b Barrel of Fun

A rider in a "barrel of fun" finds herself stuck with her back to the wall. Which diagram correctly shows the forces acting on her?

The normal force of the wall on the rider provides the centripetal force needed to keep her going around in a circle. The downward force of gravity is balanced by the upward frictional force on her, so she does not slip vertically.

Dynamics in Two Dimensions

Suppose the x - and y-components of acceleration are independent of each other. That is, a_{x} does not depend on y or v_{y}, and a_{y} does not depend on x or v_{x}. Your problem-solving strategy is to
1.Draw a pictorial representation and a FBD.
2.Choose the appropriate coordinate system
3.Use Newton's second law in component form.

$$
\left(F_{\text {net }}\right)_{x}=\sum F_{x}=m a_{x} \quad \text { and } \quad\left(F_{\text {net }}\right)_{y}=\sum F_{y}=m a_{y}
$$

The force components (including proper signs) are found from the free-body diagram.

Dynamics in Two Dimensions

4. Solve for the acceleration. If the acceleration is constant, use the two-dimensional kinematic equations of Chapter 4 to find velocities and positions.

$$
\begin{array}{ll}
x_{\mathrm{f}}=x_{\mathrm{i}}+v_{\mathrm{i} x} \Delta t+\frac{1}{2} a_{x}(\Delta t)^{2} & y_{\mathrm{f}}=y_{\mathrm{i}}+v_{\mathrm{i} y} \Delta t+\frac{1}{2} a_{y}(\Delta t)^{2} \\
v_{\mathrm{fx}}=v_{\mathrm{i} x}+a_{x} \Delta t & v_{\mathrm{fy}}=v_{\mathrm{i} y}+a_{y} \Delta t
\end{array}
$$

Uniform Circular Motion

- Motion in a circle with:
- Constant radius R

1) Constant speed $v=|v|$ (magnitude of velocity)

- Some circular motion terms:
- Recall that 1 revolution $=360^{\circ}=2 \pi$ radians
» frequency (f) $=$ revolutions / second
» period (P) = seconds $/$ revolution

$$
f=1 / P
$$

Centripetal (radial) Acceleration

- If you swing a ball in a circle, the speed is constant but the velocity is not constant, since the direction is changing.
\$ must be some acceleration: centripetal acceleration!
- Magnitude:

Since there is acceleration, there has to be a force!
$>$ Centripetal (radial) Force

\Rightarrow magnitude: $F=m a=\frac{R}{R}$
\Rightarrow direction: towards the center of the circle

Important Point !!

Note: force is always provided
by another force!

It is not a separate force.

Examples:

- A car going around a curve
- A ball on a string
- The earth going around the sun

\square

\longrightarrow \longrightarrow gravity

ConcepTest 8.1a Tetherball

In the game of tetherball, the struck ball whirls around a pole. In what direction does the net force on the ball point?

1) Towards the top of the pole
2) Towards the ground
3) Along the horizontal component of the tension force
4) Along the vertical component of the tension force
5) Tangential to the circle

ConcepTest 8.1b Tetherball

In the game of tetherball, the struck ball whirls around a pole. In what direction does the net force on the ball point?

1) Towards the top of the pole
2) Towards the ground
3) Along the horizontal component of the tension force
4) Along the vertical component of the tension force
5) Tangential to the circle

The vertical component of the
tension balances the weight. The
horizontal component of tension
provides the centripetal force
which points towards the center of
the circle.

ConcepTest 8.2a) Roller Coaster

You're riding on a roller coaster. When the car is at rest, the normal force N exerted by your seat is equal to your weight mg . How does N change when you are in motion and go over the crest of a hill?

1) N remains equal to mg
2) N is smaller than $m g$
3) N is larger than $m g$
4) None of the above

ConcepTest 8.2b Roller Coaster

- You're riding on a roller coaster.

When the car is at rest, the normal force N exerted by your seat is equal to your weight mg . How does N change when you are in motion and go over the
(1) N remains equal to mg
(2) N is smaller than $m g$
(3) N is larger than $m g$
(4) None of the above

Example: Conical Pendulum

- A conical pendulum is formed by attaching a 600 g ball to a 1.0 m long string, then allowing the mass to move in a horizontal circle. Tension in string equals 8.3 N .

What is the angular velocity?

- What is the angle between the string and the vertical?

Ponderable: Conical Pendulum

- A conical pendulum is formed by attaching a 600 g ball to a 1.0 m long string, then allowing the mass to move in a horizontal circle. Tension in string equals 8.3 N .

What is the angular velocity?

- What is the angle between the string and the vertical?

Ponderable: Stunt plane

A stunt plane does a series of vertical loop-the-loops. At what point in the circle does the pilot feel the heaviest? Explain. Include a free-body diagram with your explanation.

Tangible: cart on a track

How does the acceleration change the weight?

- In this exercise, you will measure the horizontal force exerted on a weight pulled by another weight that is attached to a pulley. Bring the following items to your table:

A track
A cart
A pulley and photogate
A level and a 200 g weight
A pair of leveling feet for the track
A Spring scale and rubber band

- Do the following:

Attach the pulley to the end of the track and put feet on each end
Rubber band the scale to the cart and tie a piece of string to the loop on the scale long enough to almost reach the floor when the cart is close to the pulley.
Tie a loop for hanging a weight on the free end and hang a 200 g weight from the loop
Pull the cart back and hold it. What is the measured mass?

- Will the measured mass change if you let go of the cart? Calculate the expected value? (the cart's mass is 500 g)
- Let go of the cart. What is the measured mass?

