

Announcements

- Movie of the week, circular motion. Find the centripetal acceleration. Measure it and identify it
- Today's class:
$>$ Relative motion
$>$ Circular motion, what causes it ... centripetal acceleration
$>$ Circular kinematics, how to describe it ... same as linear motion

Page 1

ConcepTest 4.4a

From the same height (and at the same time), one ball is dropped and another ball is fired horizontally. Which one will hit the ground first?

Dropping the ball I

1) the "dropped" ball
2) the "fired" ball
3) they both hit at the same time
4) it depends on how hard the ball was fired
5) it depends on the initial height

ConcepTest 4.4b Dropping the ball I

From the same height (and at the same time), one ball is dropped and another ball is fired horizontally. Which one will hit the ground first?
(1) the "dropped" ball
(2) the "fired" ball
(3) they both hit at the same time
(4) it depends on how hard the ball was fired
(5) it depends on the initial height

Both of the balls are falling vertically under the influence of gravity. They both fall from the same height. Therefore, they will hit the ground at the same time. The fact that one is moving horizontally is irrelevant --- remember that the x and y motions are independent!

Follow-up: Which ball has the greater velocity at ground level?
PHYS 1021: Chap. 4, Pg 4

General Principles

Motion is relative

Relative motion

Inertial reference frames move relative to each other with constant velocity \vec{V}. Measurements of position and velocity measured in frame S are related to measurements in frame S^{\prime} by the Galilean transformations:

$$
\begin{array}{ll}
x^{\prime}=x-V_{x} t & v_{x}^{\prime}=v_{x}-V_{x} \\
y^{\prime}=y-V_{y} t & v_{y}^{\prime}=v_{y}-V_{y}
\end{array}
$$

Gaileo Experiment

ConcepTest 4.5a

A kid in the back of a pickup truck travelling at 0 mph gets bored and throws his basketball straight up.
The ball lands

Throwing the ball I

1) the behind the truck
2) In his hands
3) In front of the truck

ConcepTest 4.5b

A kid in the back of a pickup truck travelling at 0 mph gets bored and throws his basketball straight up.
The ball lands

Throwing the ball I

1) the behind the truck
2) In his hands
3) In front of the truck

Page 5

A plane traveling horizontally to the right at $100 \mathrm{~m} / \mathrm{s}$ flies past a helicopter that is going straight up at $20 \mathrm{~m} / \mathrm{s}$. From the helicopter's perspective, the plane's direction and speed are
A. right and up, more than $100 \mathrm{~m} / \mathrm{s}$.
B. right and up, less than $100 \mathrm{~m} / \mathrm{s}$.
C. right and down, more than $100 \mathrm{~m} / \mathrm{s}$.
D. right and down, less than $100 \mathrm{~m} / \mathrm{s}$.
E. right and down, $100 \mathrm{~m} / \mathrm{s}$.

A plane traveling horizontally to the right at $100 \mathrm{~m} / \mathrm{s}$ flies past a helicopter that is going straight up at $20 \mathrm{~m} / \mathrm{s}$. From the helicopter's perspective, the plane's direction and speed are

A. right and up, more than $100 \mathrm{~m} / \mathrm{s}$.
B. right and up, less than $100 \mathrm{~m} / \mathrm{s}$.
\square
C. right and down, more than $100 \mathrm{~m} / \mathrm{s}$.
D. right and down, less than $100 \mathrm{~m} / \mathrm{s}$.
E. right and down, $100 \mathrm{~m} / \mathrm{s}$.

Example: Relative Motion

A plane traveling horizontally to the right at $100 \mathrm{~m} / \mathrm{s}$ flies past a helicopter that is going straight up at $\mathbf{2 0} \mathbf{~ m} / \mathrm{s}$.
What is the magnitude and direction of the plane's velocity from the helicopter's perspective.

Numerical Problem: Relative Motion

- A kayaker wants to paddle north across a 100 m wide river. The current in the river is flowing to the east at $2 \mathrm{~m} / \mathrm{s}$. The kayaker can paddle in still water at a speed of $3 \mathrm{~m} / \mathrm{s}$.
- In which direction (give the angle) should the kayaker paddle in order to travel to a point directly across the river?
- How long will it take the kayaker to cross the river?

Ponderable: Acceleration in 2D

- A sailboat is traveling east at $5.0 \mathrm{~m} / \mathrm{s}$. A sudden gust of wind gives the boat an acceleration of $0.8 \mathrm{~m} / \mathrm{s}^{2} 45$ degrees north of east. What is the boat's speed and direction after 6s?

Page 8

Spinning chain (movie 5-24ab)

ConcepTest 4.7.a What does the chain do?

1. It falls flat
2. It breaks
3. It rolls off the table
4. It flies through the air
5. It slides off the table

ConcepTest 4.7b What does the chain do?

1. It falls flat

It hreakc
It rolls off the table
4. It flies through the air
5. It slides off the table

This demonstrates that an object (the chain) that is in spinning motion will remain in spinning motion, unless acted upon by an external angular acceleration. The tension on each link provides an inwardly directed component for the centripetal force ... note this is an internal force

Uniform Circular Motion

- Motion in a circle with:
, Constant radius R

1) Constant speed $v=|v|$ (magnitude of velocity)

- Some circular motion terms:

1) Recall that 1 revolution $=360^{\circ}=2 \pi$ radians » frequency (f) = revolutions / second » period (P) = seconds / revolution

$$
f=1 / P
$$

Centripetal (radial) Acceleration

- If you swing a ball in a circle, the speed is constant but the velocity is not constant, since the direction is changing.

》 must be some acceleration: centripetal acceleration!

〉 Magnitude:

- Direction: toward center of circle Since an acceleration is needed, then it

- magnitude:

$$
a=\frac{v^{2}}{R}
$$

\Rightarrow direction: towards the center of the circle

Rank in order, from largest to smallest, the centripetal accelerations $\left(a_{r}\right)_{\mathrm{a}}$ to $\left(a_{r}\right)_{\mathrm{e}}$ of particles a to e.

(a)
(b)
(c)

(d)

(e)
A. $\left(a_{r}\right)_{\mathrm{b}}>\left(a_{r}\right)_{\mathrm{e}}>\left(a_{r}\right)_{\mathrm{a}}>\left(a_{r}\right)_{\mathrm{d}}>\left(a_{r}\right)_{\mathrm{c}}$
B. $\left(a_{r}\right)_{\mathrm{b}}>\left(a_{r}\right)_{\mathrm{e}}>\left(a_{r}\right)_{\mathrm{a}}=\left(a_{r}\right)_{\mathrm{c}}>\left(a_{r}\right)_{\mathrm{d}}$
C. $\left(a_{r}\right)_{\mathrm{b}}=\left(a_{r}\right)_{\mathrm{e}}>\left(a_{r}\right)_{\mathrm{a}}=\left(a_{r}\right)_{\mathrm{c}}>\left(a_{r}\right)_{\mathrm{d}}$
D. $\left(a_{r}\right)_{\mathrm{b}}>\left(a_{r}\right)_{\mathrm{a}}=\left(a_{r}\right)_{\mathrm{c}}=\left(a_{r}\right)_{\mathrm{e}}>\left(a_{r}\right)_{\mathrm{d}}$
E. $\left(a_{r}\right)_{\mathrm{b}}>\left(a_{r}\right)_{\mathrm{a}}=\left(a_{r}\right)_{\mathrm{c}}>\left(a_{r}\right)_{\mathrm{e}}>\left(a_{r}\right)_{\mathrm{d}}$

Rank in order, from largest to smallest, the centripetal accelerations $\left(a_{r}\right)_{\mathrm{a}}$ to $\left(a_{r}\right)_{\mathrm{e}}$ of particles a to e.

A. $\left(a_{r}\right)_{\mathrm{b}}>\left(a_{r}\right)_{\mathrm{e}}>\left(a_{r}\right)_{\mathrm{a}}>\left(a_{r}\right)_{\mathrm{d}}>\left(a_{r}\right)_{\mathrm{c}}$
B. $\left(a_{r}\right)_{\mathrm{b}}>\left(a_{r}\right)_{\mathrm{e}}>\left(a_{r}\right)_{\mathrm{a}}=\left(a_{r}\right)_{\mathrm{c}}>\left(a_{r}\right)_{\mathrm{d}}$
C. $\left(a_{r}\right)_{\mathrm{b}}=\left(a_{r}\right)_{\mathrm{e}}>\left(a_{r}\right)_{\mathrm{a}}=\left(a_{r}\right)_{\mathrm{c}}>\left(a_{r}\right)_{\mathrm{d}}$
D. $\left(a_{r}\right)_{\mathrm{b}}>\left(a_{r}\right)_{\mathrm{a}}=\left(a_{r}\right)_{\mathrm{c}}=\left(a_{r}\right)_{\mathrm{e}}>\left(a_{r}\right)_{\mathrm{d}}$
E. $\left(a_{r}\right)_{\mathrm{b}}>\left(a_{r}\right)_{\mathrm{a}}=\left(a_{r}\right)_{\mathrm{a}}>\left(a_{r}\right)_{\mathrm{e}}>\left(a_{r}\right)_{\mathrm{d}}$

Spinning erasers (movie 5-15ab)

ConcepTest 4.8a Which eraser goes of first?

- The inner one
- The center one
- The outer one
- All three at once

ConcepTest 4.8b Which eraser goes of first?

- The inner one

The center one
The outer one

- All three at once

All three have the same angular velocity as the disk spins up, the outer one requires the largest centripetal acceleration ($a=\omega^{2} r$) to keep it going in a circle.

Ponderable: Swinging Pendulum

A pendulum swings from its end point on the left (point 1) to its end point on the right (point 5). At each of the labeled points:
a. Use a black pen or pencil to draw and label the
vectors and at each point. Make sure the
length indicates the relative size of the vector.
b. Use a red pen or pencil to draw and label the
total acceleration vector

