

Iso-what???WhatConstantthermalT E does not changebaricP most common experimentallychoricV - no work done		
thermalT E does not changebaricP most common experimentallychoricV - no work done		Iso-what???
thermalT E does not changebaricP most common experimentallychoricV - no work done		
baricP most common experimentallychoricV - no work done	What	Constant
choric V – no work done	thermal	T E does not change
	baric	P most common experimentally
	choric	V – no work done
adiabatic No heat enters	adiabatic	No heat enters
		PHYS 1021: Chap. 18,

Energy conservation for large systems

From the discussion on Tuesday, the energy per degree of freedom is:

$$E_{th} = \frac{1}{2} k_B T$$

For a monoatomic gas, this is written – Note that there is no difference between E and E_{th} , both are kinetic + potential energy:

$$\mathsf{E}_{\mathsf{th}} = \frac{3}{2} N \mathsf{k}_{\mathsf{B}} \mathsf{T} = \frac{3}{2} \mathsf{P} \mathsf{V}$$

Sometimes (often) the symbol U is used.

$$U = \frac{3}{2}Nk_{\rm B}T = \frac{3}{2}PV$$

PHYS 1021: Chap. 18, Pg 9

Ponderable: Work done on a gas increases its internal energy Continued

- 1. The figure shows a process in which work is done to compress a gas.
- 2. Draw and label a process A that starts and ends at the same points but does more work on the gas.
- 3. Draw and label a process B that starts and ends at the same points but does less work on the gas.

	pecific heats a s of solids and	
Substance	c (J/kg K)	C(J/molK)
Solids		
Aluminum	900	24.3
Copper	385	24.4
Iron	449	25.1
Gold	129	25.4
Lead	128	26.5
Ice	2090	37.6
Liquids		
Ethyl alcohol	2400	110.4
Mercury	140	28.1
Water	4190	75.4

The Specific Heats of Gases

It is useful to define two different versions of the specific heat of gases, one for constant-volume (isochoric) processes and one for constant-pressure (isobaric) processes. We will define these as molar specific heats because we usually do gas calculations using moles instead of mass. The quantity of heat needed to change the temperature of *n* moles of gas by ΔT is

 $Q = nC_{\rm V}\Delta T$ (temperature change at constant volume)

 $Q = nC_{\rm P}\Delta T$ (temperature change at constant pressure)

where C_V is the molar specific heat at constant volume and $C_{\rm P}$ is the molar specific heat at constant pressure.

PHYS 1021: Chap. 18, Pg 27

The	e Specific	Heats of	Gases	
	17.4 Molar		ats of gases	
Gas	C _P	$C_{ m V}$	$C_{\rm P}-C_{\rm V}$	
Monat	omic Gases			
Не	20.8	12.5	8.3	
Ne	20.8	12.5	8.3	
Ar	20.8	12.5	8.3	
Diaton	nic Gases			
H_2	28.7	20.4	8.3	
N_2	29.1	20.8	8.3	
O_2	29.2	20.9	8.3	
			PHYS 10	21: Chap. 18, Pg 28

Example: Specific heat

In a laboratory environment, it is much easier to hold pressure constant than volume, so if heat is applied to a sample with a know C_v , held at constant pressure, what will be the rise in temperature?

PHYS 1021: Chap. 18, Pg 29

Ponderable: Isothermal expansion of a gas

On the whiteboard, draw a PV diagram, and sketch (accurately) on it an isotherm. Now Sketch a second isotherm at a different temperature than the first. Think about the following:

1. What is the work done in compressing the gas, following the first isotherm.

2. Draw three lines connecting the two isotherms and rank them in order based on the change in internal energy (U) that they represent.

PHYS 1021: Chap. 18, Pg 31