

Page 1

Ponderable: Shake the dressing

The container shown holds a mixture of oil and water. To begin, the container is shaken vigorously to mix the oil into the water by breaking it into very tiny droplets. This is what happens when you shake a jar of salad dressing. Eventually, the oil separates and rises to the top. Oil and water are immiscible, meaning that the total volume is the same whether they are mixed or separated.

The pressure at the bottom of the container after the oil has separated is not the same as the initial pressure when the oil and water are mixed, although it may take some careful thought to understand why.

Is the final pressure at the bottom higher or lower than the initial pressure? Explain.

Buoyancy

Fluid is in static equilibrium:

pressure the same in all directions!
Recall that pressure depends on depth:

Buoyant force UP \propto volume of the object

```
Bigger area for object \(\quad \Rightarrow\) larger force
Bigger height of object \(\Rightarrow\) larger pressure difference
```


Buoyancy

force on top due to this much water
force on bottom due to
this much water

Buoyant force due to different forces at top and bottom of object !!

$$
F=\left(P_{u}-P_{1}\right) A=\rho g V
$$

F is the weight of the displaced water, Archimedes Principle

Archimedes' Principle

Buoyant force comes from the different pressures at the top and the bottom of the object !

$$
\begin{aligned}
\boldsymbol{F}_{\boldsymbol{B}} & =\boldsymbol{F}_{2}-\boldsymbol{F}_{1} \\
& =P_{2} \boldsymbol{A}-P_{1} \boldsymbol{A} \\
& =\rho_{\text {filuid }} g h_{2} \boldsymbol{A}-\rho_{\text {fiuid }} g h_{1} \boldsymbol{A} \\
& =\rho_{\text {iuid }} \boldsymbol{A}\left(h_{2}-h_{1}\right) \boldsymbol{g} \\
& =\rho_{\text {fiuid }} V \mathbf{g}
\end{aligned}
$$

Archimedes' Principle:

$$
\text { Buoyant force } \quad F_{B} \equiv \rho_{\text {flluide }} V g \text { (weight of fluid displaced) }
$$

ConcepTest 15.4 Archimedes V

Two beakers are filled to the brim with water. A wooden block is placed in the second beaker so it floats. (Some of the water will overflow the beaker). Both beakers are then weighed. Which scale reads a larger weight?

3 same for both

ConcepTest 15.4 Archimedes V

- Two beakers are filled to the brim with water. A wooden block is placed in the second beaker so it floats. (Some of the water will overflow the beaker). Both beakers are then weighed. Which scale reads a larger weight?

The block in B displaces an amount of water equal to its weight, since it is floating. That means that the weight of the overflowed water is equal to the weight of the block, and so the beaker in B has the same weight

3 same for both PHYS 1021: Chap. 15, Pg 8

Does it float or sink?

Consider UP and DOWN forces (i.e. the net force) on object:

$$
F_{n e t}=F_{B}-W=\left(\rho_{\text {fluid }}-\rho_{\text {object }}\right) V \boldsymbol{g}
$$

F_{B}		
$F_{B}<W$	$F_{\text {net }}$	$F_{B}=W$
$\rho_{\text {fluid }}<\rho_{\text {object }}$	$\rho_{\text {fluid }}=\rho_{\text {object }}$	$F_{B}>W$

Floating Objects

less water displaced F_{B} is smaller but still $F_{B}>W$

To float on the surface, the net force must be zero:
$F_{B}($ force up) $=W$ (force down)
even less water displaced F_{B} is even smaller

$$
F_{B}=W
$$

A floating object

 displaces a weight of fluid equal to its own weight

All three are less dense than the liquid, since they are floating above the surface. The relative volume displaced by B is the least and by A is the most, so these are the least and most dense respectively

ConcepTest 15.6 Rank the buoyant forces

 All 3 have same volume From high to low:(1) a,b,c
(2) c,b,a
(3) All are equal
(4) b,c,a
(5) a,c,b

Archimedes' principle states that the buoyant force on an object is equal to the weight of the fluid displaced by the object. Each object displaces exactly the same amount of fluid since each is the same volume. So the buoyant force on all three objects is the same. Note that the buoyant force does not depend on the mass or location of the object.

ConcepTest 15.7 (Pre) On golden pond

A boat carrying a large chunk of steel is floating on a lake. The chunk is then thrown overboard and sinks. What happens to the water level in the lake (with respect to the shore)?

1) rises
2) drops
3) remains the same
4) depends on the size of the steel

Ponderable:Bathroom scale in a pool

Suppose that you stand on a bathroom scale that is at the bottom of a swimming pool. The water comes up to your waist. Is the scale reading your weight? If not, does the scale read more or less than your weight? Explain.

Stainless Steel Ball Overboard

A 1 inch diameter steel ball is dropped into a lake. Ignoring viscosity (probably a bad idea) calculate the initial acceleration of the ball.

Ponderable: Ship shape

Ships A and B have the same height and the same mass. Their cross-sectional profiles are shown in the figure. Does one ship ride higher in the water (more height above the water line) than the other? If so, which one? Explain.

Why are ships shaped like B and not A?

Friction lab

A couple of weeks ago, you measured the coefficient of friction of some objects and the white boards. Tomorrow, you want to measure the coefficient of rolling friction of the carts on the tracks. How would you do that?

We will do this tomorrow!

Ponderable: How lean are you?

- The body of a $75.7-\mathrm{kg}$ person contains 0.0150 m 3 of body fat.
- If the density of fat is $880 \mathrm{~kg} / \mathrm{m} 3$, what percentage of the person's body weight is composed of fat?
- If the person is weighed fully submerged in a pool, will he appear lighter or heavier? By how much will the reading on the scale change due to his body fat .

