

ConcepTest 12.1 Seesaw

You and your friend want to play on the seesaw, but you are much heavier than your friend. If your friend sits in the middle (like the girl on the left), where should you sit?

1. There is no position where you can balance the seesaw
2. Sit close to the end
3. Directly at the pivot point
4. Sit close to the pivot point
5. Sit at the same distance as your friend

ConcepTest 12.1 Seesaw

You and your friend want to play on the seesaw, but you are much heavier than your friend. If your
friend sits in the middle (like the girl on the left), where should you sit?

1. There is no position where you can balance the seesaw
2. Sit close to the end
3. Directly at the pivot point
4. Sit close to the pivot point
5. Sit at the same distance as your friend

Linear and Rotational Motion

Translation	Rotation
m	I
$\overrightarrow{\mathbf{F}}$	τ
$\overrightarrow{\mathbf{a}}$	a
$\Sigma \overrightarrow{\mathbf{F}}=m \overrightarrow{\mathbf{a}}$	$\Sigma \tau=l \mathrm{a}$
Δx	$\Delta \theta$
$W=F_{x} \Delta x$	$W=\tau \Delta \theta$
$\overrightarrow{\mathbf{v}}$	ω
$K=\frac{1}{2} m v^{2}$	$K=\frac{1}{2} I \omega^{2}$
$\overrightarrow{\mathbf{p}}=m \overrightarrow{\mathbf{v}}$	$L=I \omega$
$\sum \overrightarrow{\mathbf{F}}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \overrightarrow{\mathbf{p}}}{\Delta t}$	$\sum \tau=\lim _{\Delta t \rightarrow 0} \frac{\Delta L}{\Delta t}$
If $\sum \overrightarrow{\mathbf{F}}=0, \overrightarrow{\mathbf{p}}$ is conserved	If $\sum \tau=0, L$ is conserved

Every aspect of linear motion has a rotational analogue, as can be seen in this table

We will focus on
torques and equilibrium
and simple kinematics:
cW is - and ccw is +

Page 3

Calculating Torque using lever arm

- A plank of length L and mass M leans against a wall at an angle θ with the ground. What is the torque exerted on the plank by gravity about an axis through its bottom end?

```
Torque = Force x perpenslicular clistance
```


$M g$

M g

$$
0
$$

$$
\tau=M g L / 2 \cos \theta
$$

Calculating Torque using perpendicular force

- A beam of length L is supported by a cable which has tension T . What is the torque produced by the tension in the cable about the hinge?

```
Torgue = perpendicular force x distances
```


ConcepTest 12.2 Using a wrench

You are using a wrench to loosen a rusty nut. Which arrangement will be the most effective in loosening the nut?

5) all are equally effective

ConcepTest 12.2 Using a wrench

You are using a wrench to loosen a rusty nut. Which arrangement will be the most effective in loosening the nut?

Since the forces are all the same, the only difference is the lever arm. The arrangement with the largest lever arm (case will provide the largest torgue.

Follow-up: What is the difference between arrangements 1 and $4 ?$
PHYS 1021: Chap. 12, Pg 10

ConcepTest 12.3
 Cassette Player

When a tape is played on a cassette deck, there is a tension in the tape which applies a torque to the supply reel. Assuming the tension remains constant during playback, how does this applied torque vary as the supply reel becomes empty?

1) torque increases
2) torque decreases
3) torque remains constant

ConcepTest 12.3 Cassette Player

When a tape is played on a cassette deck, there is a tension in the tape which applies a torque to the supply reel. Assuming the tension remains

1) torque increases
2) torque decreases
3) torque remains constant this applied torque vary as the supply reel becomes empty?

As the supply reel empties, the lever arm decreases because the radius of the reel (with tape on it) is decreasing. Thus, as the playback continues, the applied torque diminishes.

Example: Torque on a disk

- The $20-\mathrm{cm}$-diameter disk in the figure can rotate on an axle through its center. What is the net torque about the axle?
- What is the angular acceleration, α.
- After two seconds, how far will the disk have rotated?

- See page 347 for moments of inertia

Example:What is wrong with this arm?

- Balance torques about the rotation axis:
$(9.9 * 35+18 * 16.50)=5^{*} F$
$F \sim\left(10^{*} 7+20^{*} 3\right)=130 N$

To pick up 1 L of milk !!!!

What is the evolutionary advantage here? What are arms good for? Throwing, hammering!
Convert force to torque to angular acceleration
Estimate weight of a projectile that is easy to throw. A baseball has a mass of $145 \mathrm{~g}=>1.45 \mathrm{~N}$

Using Torque

- Now consider a plank of mass M suspended by two strings as shown. We want to find the tension in each string.
- First use $\Sigma F=0$

$$
T_{1}+T_{2}=M g
$$

- This is no longer enough to solve the problem !
>1 equation, 2 unknowns
We need more information !!

Using Torque...

- We do have more information:
$>$ We know the plank is not rotating ! -- has no angular acceleration.

$$
\Sigma \tau=0
$$

This is true about any axis we choose !

Example: Using Torque...

Choose the rotation axis to be at the center of mass:Torque due to the string on the right is counter-clockwise:

$$
\tau_{2}=T_{2} \frac{L}{4}
$$

Torque due to the string on the left is clockwise:

$$
\tau_{1}=-T_{1} \frac{L}{2}
$$

Using Torque...continued

$$
\begin{gathered}
\Sigma \tau=0 \\
T_{2} \frac{L}{4}-T_{1} \frac{L}{2}=0 \\
\quad T_{2}=2 T_{1}
\end{gathered}
$$

We already found that: $\quad T_{1}+T_{2}=M g$

ConcepTest 12.4
A (static) mobile hangs as shown below. The rods are massless and have lengths as indicated. The mass of the ball at the bottom right is 1 kg . What is the total mass of the mobile ?
mobile

1) 5 kg
2) 6 kg
3) 7 kg
4) 8 kg
5) 9 kg

ConcepTest 12.4

- A (static) mobile hangs as shown below. The rods are massless and have lengths as indicated. The mass of the ball at the bottom right is 1 kg . What is the total mass of the mobile ?

mobile

(1) 5 kg
(2) 6 kg
(3) 7 kg
(4) 8 kg
(5) 9 kg

Use torques in two steps:
(1) find the big mass on the bottom left (lower rod only)
(2) use the entire lower rod assembly (with two masses) to find the mass on top right Finally add up all the masses.

ConcepTest 12.5

A croquet mallet balances when suspended from its center of mass. If the mallet is cut in two pieces at this point, which piece has the greater mass?

Croquet Mallet

1) the piece with the head
2) the piece with the handle
3) both pieces are equal
4) can't tell without knowing the mass of the mallet

ConcepTest 12.5 Croquet Mallet

A croquet mallet balances when suspended from its center of mass. If the mallet is cut in two pieces at this point, which piece has the greater mass?

1) the piece with the head
2) the piece with the handle
3) both pieces are equal
4) can't tell without knowing the mass of the mallet

The mallet balances not because the pieces have equal

Ponderable: Where is your C.M.

Ponderable: Size of torque

All are positive (ccw)
$e, a=b, c=d, f=0$

Ponderable: Where is your C.M.

A student gives a quick push to a ball at the end of a massless, rigid rod, as shown in FIGURE Q12.10, causing the ball to rotate clockwise in a horizontal circle. The rod's pivot is frictionless.
a. As the student is pushing, is the torque about the pivot positive, negative, or zero?
b. After the push has ended, does the ball's angular velocity (i) steadily increase; (ii) increase for awhile, then hold steady; (iii) hold steady; (iv) decrease for awhile, then hold steady; or (v) steadily decrease? Explain.
c. Right after the push has ended, is the torque positive, negative, or zero?

Ponderable: Where is your C.M.

Example: Hang the sign

> You are asked to hang a uniform beam and sign using a cable that has a breaking strength of 415 N . The store owner desires that it hang out over the sidewalk as shown. The sign has a weight of 178.0 N and the beam's weight is 37.0 N . The beam's length is 1.86 m and the sign's dimensions are 1.00 m horizontally $\times 0.80 \mathrm{~m}$ vertically. What is the minimum angle θ that you can have between the beam and cable?

Example: Hang the sign

Estimate: The sign and pole have less weight than half the breaking force of the cable. Therefore the angle can be small, say less than 45 degrees

Strategy Use $\Sigma F=0$ and $\sum \tau=0$. Choose the axis of rotation at the point where the beam meets the store.
Solution The tension in the cable cannot exceed 415 N . Sum the torques.

$$
\Sigma \tau=0=T \sin \theta(1.86 \mathrm{~m})-(37.0 \mathrm{~N})(0.93 \mathrm{~m})-(178.0 \mathrm{~N})(1.36 \mathrm{~m})
$$

Solve for θ and substitute 415 N (the breaking strength) for T.

$$
\theta=\sin ^{-1} \frac{(37.0 \mathrm{~N})(0.93 \mathrm{~m})+(178.0 \mathrm{~N})(1.36 \mathrm{~m})}{(415 \mathrm{~N})(1.86 \mathrm{~m})}=21.0^{\circ}
$$

The minimum angle is 21.0°.

Ponderable: Where is your C.M.

Since humans are generally not symmetrically shaped, the height of our center of gravity is generally not half of our height. One way to determine the location of the center of gravity is shown in the diagram. A 2.2-m-long uniform plank is supported by two bathroom scales, one at either end. Initially the scales each read 100.0 N. A 1.60-m-tall student then lies on top of the plank, with the soles of his feet directly above scale B. Now scale A reads 394.0 N and scale B reads 541.0 N.
-What is the student's weight?
-How far is his center of gravity from the soles of his feet?

- When standing, how far above the floor is his center of gravity, expressed as a fraction of his height?

Ponderable: Where is your C.M.

(a) Strategy The weight is equal to the change in the combined readings of the scales.

Solution Compute the student's weight.
$W=362.0 \mathrm{~N}+525.5 \mathrm{~N}-100.0 \mathrm{~N}-100.0 \mathrm{~N}$

$$
=687.5 \mathrm{~N}
$$

(b) Strategy The system is in equilibrium. Choose the axis of rotation at the point of contact between the plank and scale B.
Solution Find x_{1}.
$\Sigma \tau=0=m_{\mathrm{s}} g x_{1}-F_{\mathrm{A}} L+m_{\mathrm{p}} g\left(\frac{L}{2}\right)$, so

$$
\frac{F_{\mathrm{A}} L-m_{\mathrm{p}} g\left(\frac{L}{2}\right)}{m g}=\frac{(2.10 \mathrm{~m})\left[362.0 \mathrm{~kg}-\frac{1}{2}(200.0 \mathrm{~N})\right]}{687.5 \mathrm{~N}}
$$

$$
=0.800 \mathrm{~m} \text {. }
$$

(c) Strategy The height of the student is $h=1.45 \mathrm{~m}$.

Solution Find the height y of the student's center of gravity.

$$
y=\frac{x_{1}}{h} h=\frac{0.800 \mathrm{~m}}{1.45 \mathrm{~m}} h
$$

$=0557 h$

New Topic

Linear and Rotational Motion

We will focus on
torques and equilibrium and simple kinematics:
cw is - and CCW is +
$\omega=\frac{d \theta}{d t}$
$\alpha=\frac{d \omega}{d t}$

ConcepTest 12.6

As the person climbs higher and higher up the ladder, does this make the ladder more or less likely to slip?

Climbing the Ladder

1) less likely to slip
2) more likely to slip
3) slipping does not depend on how high the person is

ConcepTest 12.6 Climbing the Ladder

As the person climbs higher and higher up the ladder, does this make the ladder more or less likely to slip?

1) less likely to slip
2) more likely to slip
3) slipping does not depend on how high the person is

Ponderable: Where is your C.M.

Rank in order, from largest to smallest, the angular accelerations α_{a} to α_{d} in FIGURE Q12.11. Explain.

Ponderable: Where is your C.M.
Rank in order, from largest to smallest, the angular accelerations α_{a} to α_{d} in FIGURE Q12.11. Explain.

Each linear acceleration is F/m and is the same.
Therefore, using $a / r=\alpha, a=b>c=d$

Example: Pulley is no longer massless

Ch. Ex. 100 - Torque and Angular Momentum

A block of mass \boldsymbol{m}_{2} hangs from a rope. The rope wraps around a pulley of rotational inertia I and then attaches to a second block of mass m_{1}, which sits on a frictionless table. What is the acceleration of the blocks when they are released?

Example: Pulley is no longer massless

For the two blocks, we have
mass 1:
mass 2:

For the pulley, we have
$\Sigma F_{x}=T_{1}=m_{1} a_{x}=m_{1} a$ and
$\Sigma F_{y}=0 ;$
$\sum F_{x}=0$ and
$\Sigma F_{y}=T_{2}-m_{2} g=m_{2} a_{y}=-m_{2} a$, so
$T_{2}=m_{2} g^{-m_{2}} a$.

$$
\Sigma \tau=-T_{1} R+T_{2} R=I \alpha=I \frac{a}{R}, \text { so }
$$

$$
T_{1}-T_{2}=-\frac{I a}{R^{2}} .
$$

Find the acceleration of the blocks.

$$
T_{1}-T_{2}=m_{1} a+m_{2} a-m_{2} g=-\frac{I a}{R^{2}}, \text { so }
$$

$$
\left(m_{1}+m_{2}+\frac{I}{R^{2}}\right) a=m_{2} g \text { or }
$$

$$
a=\frac{m_{2} g}{m_{1}+m_{2}+\frac{I}{R^{2}}}
$$

Momentum

For your estimate, just say that a must be smaller than g b / c of the added inertia of the pulley, and downward pointing.

Ponderable: Roll down the barrel

A uniform cylinder with a radius of 15 cm has been

 attached to two cords and the cords are wound around it and hung from the ceiling. The cylinder is released from rest and the cords unwind as the cylinder descends. -What is the acceleration of the cylinder? -If the mass of the cylinder is 2.6 kg , what is the tension in each cord?

Ponderable: Roll down the barrel

A uniform cylinder with a radius of 15 cm has been attached to two cords and the cords are wound around it and hung from the ceiling. The cylinder is released from rest and the cords unwind as the cylinder descends.
-What is the acceleration of the cylinder?
-If the mass of the cylinder is 2.6 kg , what is the tension in each cord?
a. Estimate that a is negative and its magnitude is less than g because of the extra rotational inertia
$\Sigma \mathrm{F}=\mathrm{ma}$
2T-mg=ma
(1)
$\Sigma \tau=2 \operatorname{Tr}=1 \alpha=-l a / r$ (a positive a at the point where the rope unwinds gives a negative, CW, α)
$2 \mathrm{Tr}=-1 / 2 \mathrm{mr}^{2} \mathrm{a} / \mathrm{r}$
T = -ma/4 (2)
Plug into (1)... -2ma/4 - mg = ma $. . . a=-2 g / 3$
b. Using (2) T =-mg/6

ConcepTest 12.7 Tipping Over

A box is placed on a ramp in the configurations shown below. Friction prevents it from sliding. The center of mass of the box is indicated by a blue dot in each case. In which cases does the box tip over ?
(1) all
(2) 1 only
(3) 2 only
(4) 3 only
(5) 2 and 3

ConcepTest 12.7 Tipping Over

A box is placed on a ramp in the configurations shown below. Friction prevents it from sliding. The center of mass of the box is indicated by a blue dot in each case. In which cases does the box tip over ?
(1) all
(2) 1 only
(3) 2 only
(4) 3 only
(5) 2 and 3

ConcepTest
 Solution

- We have seen that the torque due to gravity acts as though all the mass of an object is concentrated at the center of mass.
$>$ Consider the bottom right corner of the box as a pivot point.
$>$ If the box can rotate such that the CM is lowered, it will !

When CM of the refrigerator is no longer over the support point, it will tip over.


```
Time's up ... Thanks for your attention and I'll see you next time.```

