

Imagine we pove anderable posminning Rabbit

-Start Logger Pro on your computer and type the data into Logger Pro. -Graph the points and then fit a curve to the data (Analyze >> curve fit). Try successively higher polynomials until the data are well fit, but no higher.
-From the fit, determine the velocity and acceleration as a function of time. Graph and discuss. Does the rabbit hop?
Hint: If you select create calculate column in the Curve Fit box, you will get a new data column with the computed Y-values, and you will have access to the coefficients of the polynomial fit. Use these you to calulate \mathbf{v} and \mathbf{a}.
Upload images to vat461vip@m.facebook.com
Phys 21: chap 1, Pg 2

Ponderable: Velocity graph

-Sketch the velocity graph associated with this
acceleration graph:

-Assuming that the initial velocity is zero, how far does
the object travel?
-Write an equation for the position as a function of time:

$$
\text { -Between t = } 0 \text { and } 1 \mathrm{~s}
$$

-Between $\mathrm{t}=1$ and 2 s
-Between t=2 and 3 s
Upload images to
vat461vip@m.facebook.com

Tangible: Hand-waving exercise
-The graphs below are plots of position and velocity vs. time. With your partners, move your hands to simulate the data in the graphs.
-For each graph, there should be a handwaver, a skeptic, and a scribe (to describe the motion). Label each description with the graph number and a sketch of the graph. Rotate roles after each graph. How well can you do this?
-Film yourself for graphs on the bottom row to analyze the videos with loggerpro.

Upload images to vat461vip@m.facebook.com Phys 21: chap 1, Pg 4

