

ConcepTest 3.1

You drive at $30 \mathrm{mi} / \mathrm{hr}$ for one hour and then at $50 \mathrm{mi} / \mathrm{hr}$ for another hour. What is your average speed for the whole 2 hour trip?

Cruising along

1) more than $40 \mathrm{mi} / \mathrm{hr}$
2) equal to $\mathbf{4 0} \mathbf{~ m i} / \mathrm{hr}$
3) less than $40 \mathrm{mi} / \mathrm{hr}$

ConcepTest 3.1

You drive at $30 \mathrm{mi} / \mathrm{hr}$ for one hour and then at $50 \mathrm{mi} / \mathrm{hr}$ for another hour. What is your average speed for the whole 2 hour trip?

Cruising along

1) more than $40 \mathrm{mi} / \mathrm{hr}$
2) equal to $40 \mathrm{mi} / \mathrm{hr}$
3) less than $\mathbf{4 0 \mathrm { mi } / \mathrm { hr }}$

Remember that the average speed is distance/time. You travel 30 + 50 miles $=80$ miles in two hours. Therefore, your average speed is $40 \mathrm{mi} / \mathrm{hr}$.

To determine your position, you need a coordinate system

Distance $=$ total length of travel

Displacement $=$ change in position
$=$ final position - initial position

Speed and Velocity

speed and velocity measure how position changes with time

average velocity $=\frac{\text { displacement }}{\text { total time }}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}}=\frac{\Delta x}{\Delta t}$
 formula for a slope!
Δx
$\mathrm{v}_{\mathrm{av}}=$ slope connecting line from t_{1} to t_{2}

Question: Does the speedometer in a car measure speed or velocity?

ConcepTest 3.2

Cruising along

You drive 4 miles at $30 \mathrm{mi} / \mathrm{hr}$ and then another 4 miles at $50 \mathrm{mi} / \mathrm{hr}$. What is your average speed for

1) more than $40 \mathrm{mi} / \mathrm{hr}$
2) equal to $40 \mathrm{mi} / \mathrm{hr}$
the whole 8 mile trip?
3) less than $40 \mathrm{mi} / \mathrm{hr}$

ConcepTest 3.2

You drive 4 miles at $\mathbf{3 0} \mathrm{mi} / \mathrm{hr}$ and then another 4 miles at $50 \mathrm{mi} / \mathrm{hr}$. What is your average speed for the whole 8 mile trip?

Cruising along

1) more than $40 \mathrm{mi} / \mathrm{hr}$
2) equal to $40 \mathrm{mi} / \mathrm{hr}$
3) less than $40 \mathrm{mi} / \mathrm{hr}$

It is not $40 \mathrm{mi} / \mathrm{hr}$! Remember that the average speed is distance/time. Since it takes longer to cover 4 miles at the slower speed, you are actually moving at $30 \mathrm{mi} / \mathrm{hr}$ for a longer period of time! Therefore, your average speed is closer to $\mathbf{3 0} \mathbf{~ m i} / \mathrm{hr}$ than it is to $\mathbf{5 0} \mathbf{~ m i} / \mathrm{hr}$.

Instantaneous Velocity

The velocity at a specific instant of time
Review:

Average velocity between x_{1} and x_{2}

$$
v_{\mathrm{av}}=\frac{\Delta x}{\Delta t}
$$

What is the velocity right at point x_{2} at the instant the time is $\mathrm{t}_{\mathbf{2}}$

Acceleration measures change in velocity!

Note that acceleration a does not have to be in the same direction as velocity v !

$\begin{aligned} \text { at } t_{1} & =0 \\ v_{1} & =15.0 \mathrm{~m} / \mathrm{s} \end{aligned}$	$\stackrel{\text { Acceleration }}{=-2.0 \mathrm{~m} / \mathrm{s}^{2}}$
	$\begin{aligned} & =5.0 \mathrm{~s} \\ & =5.0 \mathrm{~m} / \mathrm{s} \end{aligned}$
	x-axis
moving along +x but slowing down	

Acceleration

acceleration measures how the velocity changes with time
average acceleration $=\frac{\text { change in velocity }}{\text { total time }}=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}=\frac{\Delta v}{\Delta t}$
formula for

a slope!
For instantaneous acceleration, the acceleration at a specific instant of time again let $\Delta \mathrm{t} \rightarrow 0$

$$
a=\operatorname{limit}_{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t}=\frac{d v}{d t}
$$

\section*{| 0 |
| :--- |
| 0 |
| 0 |
| $\frac{0}{6}$ |}

Phys 11: chap 2, Pg 12

You drop a rubber ball. Right after it leaves your hand and before it hits the floor, which of the above plots represents the v vs. \boldsymbol{t} graph for this motion? (Assume your yaxis is pointing up).

The ball is dropped from rest, so its initial velocity is zero. Since the y axis is pointing upwards and the ball is falling downwards, its velocity is negative and becomes more and more negative as it accelerates downward.

