Multidimensional Poverty Dynamics

Mauricio Apablaza - OPHI, University of Oxford
Multidimensional Poverty Dynamics

The literature on poverty dynamics is vast (poverty transitions, chronic versus transient poverty, expected vulnerability; and, poverty traps). Yet all this literature treats poverty as unidimensional, implicitly or explicitly, and focuses on monetary metrics of wellbeing.

- Decomposition of changes and Transitions (2011). Purpose: To improve the understanding of changes in multidimensional poverty and its components, by linking micro changes (by dimension, subgroup and in terms of probability) with the aggregated results.

- Chronic multidimensional poverty (2012). Purpose: We seek to build a bridge between the Alkire and Foster methodology and the strand of the poverty dynamics literature, specially chronicity (Foster, 2009).
Decomposition of changes and Transitions (2011)
Normalized adjusted headcount ratio

\[M_0(t - a) \]

\[\Delta \%_a M_0(t) \]

\[M_0(t) \]

Decomposition and Transitions

REPEATED CROSS SECTIONAL AND PANEL DATA
Decomposition and Transitions

REPEATED CROSS SECTIONAL AND PANEL DATA

Normalized adjusted headcount ratio

\[M_0(t-a) \]
\[\Delta\%_a M_0(t) \]
\[M_0(t) \]

\[\Delta\%_a H(t) \]
\[\Delta\%_a A(t) \]

\[\Delta\%_a H(t) \times \Delta\%_a A(t) \]
Decomposition and Transitions

REPEATED CROSS SECTIONAL AND PANEL DATA

Normalized adjusted headcount ratio

\[M_0(t - a) \]
\[\Delta \% _a M_0(t) \]
\[\Delta \% _a H(t) \times \Delta \% _a A(t) \]

Decomposition by Subgroup
Decomposition by Dimension
Decomposition and Transitions

REPEATED CROSS SECTIONAL AND PANEL DATA

-12.8% -8.4% -5.4% -5.8% -9.9% -7.1% -12.3% 0.3%

Δ%M

OPHI
Oxford Poverty & Human Development Initiative
Decomposition and Transitions

REPEATED CROSS SECTIONAL AND PANEL DATA

<table>
<thead>
<tr>
<th>Period</th>
<th>Δ%Hx</th>
<th>Δ%A</th>
<th>Δ%H</th>
<th>Δ%M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990-1992</td>
<td></td>
<td></td>
<td>-10.5%</td>
<td></td>
</tr>
<tr>
<td>1992-1994</td>
<td>-1.0%</td>
<td>-7.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994-1996</td>
<td>8.4%</td>
<td>-5.6%</td>
<td>-5.4%</td>
<td></td>
</tr>
<tr>
<td>1996-1998</td>
<td>-1.2%</td>
<td>-5.2%</td>
<td>-0.8%</td>
<td></td>
</tr>
<tr>
<td>1998-2000</td>
<td>-1.3%</td>
<td>-8.9%</td>
<td>2.8%</td>
<td></td>
</tr>
<tr>
<td>2000-2003</td>
<td></td>
<td>-6.0%</td>
<td>-2.5%</td>
<td></td>
</tr>
<tr>
<td>2003-2006</td>
<td></td>
<td></td>
<td>-1.3%</td>
<td>-7.1%</td>
</tr>
<tr>
<td>2006-2009</td>
<td></td>
<td></td>
<td></td>
<td>-11.2%</td>
</tr>
</tbody>
</table>
Decomposition and Transitions

REPEATED CROSS SECTIONAL AND PANEL DATA

-10.5% -7.6% -5.6% -5.2% -8.9% -6.0% -11.2% 1.2%

Adjusted Urban Contribution
Adjusted Rural Contribution
Δ%H
Δ%A
Δ%M

Δ%Hx Δ%A

Oxford Poverty & Human Development Initiative
Decomposition and Transitions

PANEL DATA

ALKIRE–FOSTER STATISTICS

\[\Delta^0 \% M^0 \]
\[\Delta^0 \% A \]
\[\Delta^0 \% A_d \]
\[\Delta^0 \% H \]
\[\Delta^0 \% C H_d \]

PROBABILITIES OF TRANSITION

\[
\Pr[c^n_t < k \mid c^{t-a}_n \geq k]
\]
\[
\Pr[c^n_t \geq k \mid c^{t-a}_n < k]
\]
\[
\Pr[x^{t}_{nd} \leq z_d \land c^n_t \geq k \mid x^{t-a}_{nd} > z_d \lor c^{t-a}_n < k]
\]
\[
\Pr[x^{t}_{nd} > z_d \lor c^n_t < k \mid x^{t-a}_{nd} \leq z_d \land c^{t-a}_n \geq k]
\]

PROBABILITY OF EXIT FROM MULTIDIMENSIONAL POVERTY

PROBABILITY OF ENTRY INTO MULTIDIMENSIONAL POVERTY

PROBABILITY TO BECOME POOR AND DEPRIVED IN \(d \)

PROBABILITY TO BECOME NON POOR or NON DEPRIVED IN \(d \)
Decomposition and Transitions

PANEL DATA – BASED ON H

Alkire and Foster (2011) also describes M_0 as a linear combination of several multidimensional headcounts with different poverty cut-off between k and D.

$\Delta% M^0$

$\Delta% H(t,k) ,..., \Delta% H(t,j)$

$P(c_i^t < k | c_i^{t-a} \geq k)$ $P(c_i^t \geq k | c_i^{t-a} < k)$
Decomposition and Transitions

PANEL DATA – BASED ON H
Decomposition and Transitions

Changes in M^0 can also be described as a combination of changes in each censored headcount. This changes could be liked to the combine probabilities of become (non) poor and (or non) deprived.

\[
P\left(x_{id}^t \leq z_d \land c_i^t \geq k \mid x_{id}^{t-a} > z_d \lor c_i^{t-a} < k\right)
\]

\[
P\left(x_{id}^t > z_d \lor c_i^t < k \mid x_{id}^{t-a} \leq z_d \land c_i^{t-a} \geq k\right)
\]
Chronic Multidimensional Poverty (2012)
Multidimensional Poverty

Deprivation Matrix

<table>
<thead>
<tr>
<th>Edu.</th>
<th>Inc.</th>
<th>Health</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Counting Vector

<table>
<thead>
<tr>
<th>Inc.</th>
<th>Identification 1</th>
<th>Identification 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>(k_d = 3)</td>
</tr>
</tbody>
</table>

Poverty identification

<table>
<thead>
<tr>
<th>Inc.</th>
<th>Identification 1</th>
<th>Identification 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(c_i \geq k_d)</td>
<td>(k_d = 3)</td>
</tr>
</tbody>
</table>

Individual Average Poverty Deprivation (only among the poor)

\[H(k_d) = \frac{1}{3} \]

\[M_0(k_d) = \frac{1}{3} \times \frac{3}{3} = \frac{1}{3} \]

\[
H(k_d, z_d) = \frac{1}{N} \sum_{i=1}^{N} \left[\sum_{d=1}^{D} w_d \cdot I(x_{itd} < z_d) \right] \geq k_d
\]

Multidimensional Poverty

\[OPHI \]
Multidimensional Poverty

But, with several periods, there are two alternative strategies of identification.

\[
H(k_d, z_d) = \frac{1}{N} \sum_{i=1}^{N} \left[I \left(\sum_{d=1}^{D} w_d \cdot I(x_{itd} < z_d) \geq k_d \right) \right]
\]

Oxford Poverty & Human Development Initiative
Identify by multidimensional poverty in every period… then by chronicity

<table>
<thead>
<tr>
<th>Present (t=1)</th>
<th>Past (t=2)</th>
<th>Past (t=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Educ.</td>
<td>Inc.</td>
<td>Health</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Poverty Condition (t=1)

Poverty Condition (t=2)

Poverty Condition (t=3)

Chronic Multidimensional Poverty Condition
Identify by multidimensional poverty in every period… then by chronicity

<table>
<thead>
<tr>
<th>Present (t=1)</th>
<th>Past (t=2)</th>
<th>Past (t=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Educ.</td>
<td>Inc.</td>
<td>Health</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Chronic Multidimensional Poverty Condition

\[
H_{cmp}(k_d, k_t, z_d) = \frac{1}{N} \sum_{i=1}^{N} \left[I \left(\sum_{t=1}^{T} w_t * I \left(\sum_{d=1}^{D} w_d * I(x_{itd} < z_d) \right) \geq k_d \right) \geq k_t \right]
\]
Identify by chronicity (deprivation) … then by Multidimensional poverty

<table>
<thead>
<tr>
<th>Aggregated</th>
<th>Chronic Deprivation Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Educ.</td>
<td>Inc.</td>
</tr>
<tr>
<td>c_{1E}</td>
<td>c_{1I}</td>
</tr>
<tr>
<td>c_{2E}</td>
<td>c_{2I}</td>
</tr>
<tr>
<td>c_{3E}</td>
<td>c_{3I}</td>
</tr>
</tbody>
</table>

Multidimensional Chronic Deprivation Condition
Identify by chronicity (deprivation) … then by Multidimensional poverty

\[
c_{itd} = \sum_{t=1}^{T} w_t \cdot I(x_{itd} < z_d)
\]

Multidimensional Chronic Deprivation Condition
Identify by chronicity (deprivation) ... then by Multidimensional poverty

\[c_{itd} = \sum_{t=1}^{T} w_t \cdot I(x_{itd} < z_d) \]

Chronic Deprivation Condition

Multidimensional Chronic Deprivation Condition

\[H^{mcp}(k_d, k_t, z_d) = \frac{1}{N} \sum_{i=1}^{N} \left[I\left(\sum_{d=1}^{D} w_d \cdot I(c_{itd} \geq k_t) \geq k_d \right) \right] \]
A general form of the Adjusted Headcount Ratio

\[
M_{cmp}^{mc}(k_d, k_t, \alpha, z_d) = \frac{1}{N} \sum_{i=1}^{N} \left[I \left(\sum_{t=1}^{T} w_t * I \left(\left(\sum_{d=1}^{D} w_d * I(x_{itd} < z_d) \right) \geq k_d \right) \geq k_t \right) \right] * AD_i(\alpha)
\]

\[
M_{mcp}^{mc}(k_d, k_t, \alpha, z_d) = \frac{1}{N} \sum_{i=1}^{N} \left[I \left(\left(\sum_{d=1}^{D} w_d * I \left(\left(\sum_{t=1}^{T} w_t * I(x_{itd} < z_d) \right) \geq k_t \right) \right) \geq k_d \right) \right] * AD_i(\alpha)
\]
A general form of the Adjusted Headcount Ratio

\[AD_i(\alpha) = \frac{1}{DT} \sum_{d=1}^{D} w_d \sum_{t=1}^{T} [g(x_{itd}, z_d)]^\alpha = \frac{1}{DT} \sum_{t=1}^{T} w_d \sum_{d=1}^{D} w_d [g(x_{itd}, z_d)]^\alpha \]

Where \(AD_i(\alpha) \) is the average deprivation of the individual \(i \)

- Multidimensional Chronic Poverty
- Chronic Multidimensional Deprivation

\[g(x_{itd}, z_d) = \begin{cases}
1 - x_{itd}/z_d, & x_{itd} < z_d \\
0, & Otherwise
\end{cases} \]
A general form of the Adjusted Headcount Ratio

Double Union Approach

\[M^{\text{cmp}}(k_d = \min\{w_d\}, k_t = \min(w_t), \alpha, z_d) = M^{\text{mcp}}(k_d = \min\{w_d\}, \min(w_t), \alpha, z_d) \]

Double Intersection Approach

\[M^{\text{cmp}}(k_d = D, k_t = T, \alpha, z_d) = M^{\text{mcp}}(k_d = D, k_t = T, \alpha, z_d) \]

Decomposition techniques (dimension, time and subgroup) & measures of transient poverty are also presented in the paper.
Longitudinal Multidimensional Poverty

\(k_d=20\%

<table>
<thead>
<tr>
<th>Chronic Multidimensional Poverty</th>
<th>Never Poor</th>
<th>Once</th>
<th>Twice</th>
<th>Always</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never Poor</td>
<td>4,050</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4,050</td>
</tr>
<tr>
<td>Once</td>
<td>2,020</td>
<td>1,781</td>
<td>253</td>
<td>10</td>
<td>4,064</td>
</tr>
<tr>
<td>Twice</td>
<td>0</td>
<td>20</td>
<td>851</td>
<td>94</td>
<td>965</td>
</tr>
<tr>
<td>Always</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>383</td>
<td>383</td>
</tr>
<tr>
<td>Total</td>
<td>6,070</td>
<td>1,800</td>
<td>1,104</td>
<td>487</td>
<td>9,461</td>
</tr>
</tbody>
</table>

Income Poverty Chronic Multidimensional Poverty
----------------------------------|------------------------|------------------------|
Income Poverty 1 | |
Chronic Multidimensional Poverty | 0.44* | 1 |
Multidimensional Chronic Deprivation | 0.49* | 0.85* |

OPHI Oxford Poverty & Human Development Initiative
Longitudinal Multidimensional Poverty

\((k_d=20\%, \, k_t=3) \)
Longitudinal Multidimensional Poverty

- “Only” difference in the identification

<table>
<thead>
<tr>
<th>Chronic Multidimensional Poverty</th>
<th>Multidimensional Chronic Deprivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Identification: the multidimensionally poor in every period</td>
<td>First identification: the chronically poor in every dimension</td>
</tr>
<tr>
<td>Second identification: the chronically multidimensionally poor</td>
<td>Second identification: the multidimensionally chronically poor</td>
</tr>
<tr>
<td>Less poverty with dynamically stable dimensions</td>
<td>Less poverty with more volatile dimensions</td>
</tr>
</tbody>
</table>

KEY: Related to probability to remain multidimensionally poor

KEY: Probability to remain deprived in a dimension
Thanks