Technology Adoption and Adaptation to Climate Change — A Case-Based Approach

Jürgen Eichberger (Heidelberg)
Ani Guerdjikova (Cergy)

May 18, 2011
Economics of Adaptation to Climate Change
Climate change can have a severe impact on agricultural societies.
Climate change can have a severe impact on agricultural societies.

Adaptation can be a slow and complex process, see Quiggin and Horowitz (2003).
Introduction

- Climate change can have a severe impact on agricultural societies.
- Adaptation can be a slow and complex process, see Quiggin and Horowitz (2003).
- Developing new technologies as a method for adaptation:
Climate change can have a severe impact on agricultural societies. Adaptation can be a slow and complex process, see Quiggin and Horowitz (2003).

Developing new technologies as a method for adaptation:
- adapting planting dates;
Climate change can have a severe impact on agricultural societies. Adaptation can be a slow and complex process, see Quiggin and Horowitz (2003).

Developing new technologies as a method for adaptation:

- adapting planting dates;
- developing more resistant crop varieties;

Barriers to adaptation:

- financial constraints;
- informational constraints.
Introduction

- Climate change can have a severe impact on agricultural societies.
- Adaptation can be a slow and complex process, see Quiggin and Horowitz (2003).
- Developing new technologies as a method for adaptation:
 - adapting planting dates;
 - developing more resistant crop varieties;
 - water management and irrigation;
Introduction

- Climate change can have a severe impact on agricultural societies.
- Adaptation can be a slow and complex process, see Quiggin and Horowitz (2003).
- Developing new technologies as a method for adaptation:
 - adapting planting dates;
 - developing more resistant crop varieties;
 - water management and irrigation;
 - soil preservation

Jürgen Eichberger
Ani Guerdjikova
(Heidelberg)
(Cergy)
May 18, 2011
Economics of Adaptation to Climate Change
Introduction

- Climate change can have a severe impact on agricultural societies.
- Adaptation can be a slow and complex process, see Quiggin and Horowitz (2003).
- Developing new technologies as a method for adaptation:
 - adapting planting dates;
 - developing more resistant crop varieties;
 - water management and irrigation;
 - soil preservation
- Barriers to adaptation:
Introduction

- Climate change can have a severe impact on agricultural societies.
- Adaptation can be a slow and complex process, see Quiggin and Horowitz (2003).
- Developing new technologies as a method for adaptation:
 - adapting planting dates;
 - developing more resistant crop varieties;
 - water management and irrigation;
 - soil preservation
- Barriers to adaptation:
 - financial constraints;
Introduction

- Climate change can have a severe impact on agricultural societies.
- Adaptation can be a slow and complex process, see Quiggin and Horowitz (2003).
- Developing new technologies as a method for adaptation:
 - adapting planting dates;
 - developing more resistant crop varieties;
 - water management and irrigation;
 - soil preservation
- Barriers to adaptation:
 - financial constraints;
 - informational constraints.
Lack of knowledge about the probability distribution of outcomes due to:

- incomplete understanding of the process of climate change;
- specificity of local conditions;
- difficulties in forecasting agents' reaction to an increase in ambiguity.

No available insurance against ambiguity due to:

- incomplete markets;
- subjective assessment of ambiguity.

Ambiguity aversion leads to less experimentation with new technologies and, thus, lower rates of adoption:
Lack of knowledge about the probability distribution of outcomes due to:
- incomplete understanding of the process of climate change;
Ambiguity and the Process of Adaptation to Climate Change

- Lack of knowledge about the probability distribution of outcomes due to:
 - incomplete understanding of the process of climate change;
 - specificity of local conditions;
 - difficulties in forecasting agents’ reaction to an increase in ambiguity.

- No available insurance against ambiguity due to:
 - incomplete markets;
 - subjective assessment of ambiguity.

Ambiguity aversion leads to less experimentation with new technologies and, thus, lower rates of adoption:

Lack of knowledge about the probability distribution of outcomes due to:

- incomplete understanding of the process of climate change;
- specificity of local conditions;
- difficulties in forecasting agents’ reaction to an increase in ambiguity.

No available insurance against ambiguity due to:

- incomplete markets;
- subjective assessment of ambiguity.

Ambiguity aversion leads to less experimentation with new technologies and, thus, lower rates of adoption:

- in theoretical models, Lange and Treich (2008), Lempert and Collins (2007), Grant and Quiggin (2009);
Ambiguity and the Process of Adaptation to Climate Change

- Lack of knowledge about the probability distribution of outcomes due to:
 - incomplete understanding of the process of climate change;
 - specificity of local conditions;
 - difficulties in forecasting agents’ reaction to an increase in ambiguity.

- No available insurance against ambiguity due to:
Ambiguity and the Process of Adaptation to Climate Change

- Lack of knowledge about the probability distribution of outcomes due to:
 - incomplete understanding of the process of climate change;
 - specificity of local conditions;
 - difficulties in forecasting agents’ reaction to an increase in ambiguity.
- No available insurance against ambiguity due to:
 - incomplete markets;

Jürgen Eichberger (Heidelberg)
Ani Guerdjikova (Cergy)
Lack of knowledge about the probability distribution of outcomes due to:
- incomplete understanding of the process of climate change;
- specificity of local conditions;
- difficulties in forecasting agents’ reaction to an increase in ambiguity.

No available insurance against ambiguity due to:
- incomplete markets;
- subjective assessment of ambiguity.
Lack of knowledge about the probability distribution of outcomes due to:
- incomplete understanding of the process of climate change;
- specificity of local conditions;
- difficulties in forecasting agents’ reaction to an increase in ambiguity.

No available insurance against ambiguity due to:
- incomplete markets;
- subjective assessment of ambiguity.

Ambiguity aversion leads to less experimentation with new technologies and, thus, lower rates of adoption:

- in theoretical models, Lange and Treich (2008), Lempert and Collins (2007), Grant and Quiggin (2009);
Lack of knowledge about the probability distribution of outcomes due to:
- incomplete understanding of the process of climate change;
- specificity of local conditions;
- difficulties in forecasting agents’ reaction to an increase in ambiguity.

No available insurance against ambiguity due to:
- incomplete markets;
- subjective assessment of ambiguity.

Ambiguity aversion leads to less experimentation with new technologies and, thus, lower rates of adoption:
- in theoretical models, Lange and Treich (2008), Lempert and Collins (2007), Grant and Quiggin (2009);
Lack of knowledge about the probability distribution of outcomes due to:
- incomplete understanding of the process of climate change;
- specificity of local conditions;
- difficulties in forecasting agents’ reaction to an increase in ambiguity.

No available insurance against ambiguity due to:
- incomplete markets;
- subjective assessment of ambiguity.

Ambiguity aversion leads to less experimentation with new technologies and, thus, lower rates of adoption:
- in theoretical models, Lange and Treich (2008), Lempert and Collins (2007), Grant and Quiggin (2009);
In this paper, we...

- Study the process of technology adoption triggered by climate change in a small agricultural society.
In this paper, we...

- Study the process of technology adoption triggered by climate change in a small agricultural society.
- Highlight the role of ambiguity in this process: new technologies are not just risky, they are ambiguous.
In this paper, we...

- Study the process of technology adoption triggered by climate change in a small agricultural society.
- Highlight the role of ambiguity in this process: new technologies are not just risky, they are ambiguous.
- Examine the impact of heterogeneous attitudes towards ambiguity in the process of innovation:
In this paper, we...

- Study the process of technology adoption triggered by climate change in a small agricultural society.
- Highlight the role of ambiguity in this process: new technologies are not just risky, they are ambiguous.
- Examine the impact of heterogeneous attitudes towards ambiguity in the process of innovation:
 - optimists: experiment with ambiguous technologies and provide the public good of information;
- Characterize the stochastic steady states in terms of technology adoption and efficiency.
- Discuss the impact of different policies designed to stimulate adoption: subsidies for early adopters; information provision.
In this paper, we...

- Study the process of technology adoption triggered by climate change in a small agricultural society.
- Highlight the role of ambiguity in this process: new technologies are not just risky, they are ambiguous.
- Examine the impact of heterogeneous attitudes towards ambiguity in the process of innovation:
 - optimists: experiment with ambiguous technologies and provide the public good of information;
 - pessimists: choose the new technology persistently in the long-run.

Jürgen Eichberger (Heidelberg)
Ani Guerdjikova (Cergy)

May 18, 2011
Economics of Adaptation to Climate Change
In this paper, we...

- Study the process of technology adoption triggered by climate change in a small agricultural society.
- Highlight the role of ambiguity in this process: new technologies are not just risky, they are ambiguous.
- Examine the impact of heterogeneous attitudes towards ambiguity in the process of innovation:
 - optimists: experiment with ambiguous technologies and provide the public good of information;
 - pessimists: choose the new technology persistently in the long-run.
- Characterize the stochastic steady states in terms of technology adoption and efficiency.
In this paper, we...

- Study the process of technology adoption triggered by climate change in a small agricultural society.
- Highlight the role of ambiguity in this process: new technologies are not just risky, they are ambiguous.
- Examine the impact of heterogeneous attitudes towards ambiguity in the process of innovation:
 - optimists: experiment with ambiguous technologies and provide the public good of information;
 - pessimists: choose the new technology persistently in the long-run.
- Characterize the stochastic steady states in terms of technology adoption and efficiency.
- Discuss the impact of different policies designed to stimulate adoption:
In this paper, we...

- Study the process of technology adoption triggered by climate change in a small agricultural society.
- Highlight the role of ambiguity in this process: new technologies are not just risky, they are ambiguous.
- Examine the impact of heterogeneous attitudes towards ambiguity in the process of innovation:
 - optimists: experiment with ambiguous technologies and provide the public good of information;
 - pessimists: choose the new technology persistently in the long-run.
- Characterize the stochastic steady states in terms of technology adoption and efficiency.
- Discuss the impact of different policies designed to stimulate adoption:
 - subsidies for early adopters;
In this paper, we...

- Study the process of technology adoption triggered by climate change in a small agricultural society.
- Highlight the role of ambiguity in this process: new technologies are not just risky, they are ambiguous.
- Examine the impact of heterogeneous attitudes towards ambiguity in the process of innovation:
 - optimists: experiment with ambiguous technologies and provide the public good of information;
 - pessimists: choose the new technology persistently in the long-run.
- Characterize the stochastic steady states in terms of technology adoption and efficiency.
- Discuss the impact of different policies designed to stimulate adoption:
 - subsidies for early adopters;
 - information provision.
The Model

- Finite community of farmers of size I.

Technologies (crops): $A = f^{OA}$; A_N: traditional, "old" technology; A_N: alternative, "new", crop.

Outputs: $R = f_{\bar{r}}^{gr}$.

Information is given in form of a data set summarizing all past choices and outcomes: $D = (a_i^t, r_i^t)_{i = 1}^{2}$.

Jürgen Eichberger (Heidelberg)
Ani Guerdjikova (Cergy)
Economics of Adaptation to Climate Change
The Model

- Finite community of farmers of size I.
- Technologies (crops): $A = \{a_O; a_N\}$
The Model

- Finite community of farmers of size I.
- Technologies (crops): $A = \{a_O; a_N\}$
 - a_O: traditional, "old" technology;
- Outputs: $R = f_{\bar{r}; r}$
- Information is given in form of a data set summarizing all past choices and outcomes: $D = (a_i, r_i)_{t=1}^{T}$.
The Model

- Finite community of farmers of size I.
- Technologies (crops): $A = \{a_O; a_N\}$
 - a_O: traditional, "old" technology;
 - a_N: alternative, "new", crop.
The Model

- Finite community of farmers of size I.
- Technologies (crops): $A = \{a_O; a_N\}$
 - a_O: traditional, "old" technology;
 - a_N: alternative, "new", crop.
- Outputs: $R = \{\bar{r}; r\}$.

Information is given in form of a data set summarizing all past choices and outcomes: $D = (a_i^t, r_i^t)_{i=1}^{I \times T}$.

Jürgen Eichberger (Heidelberg)
Ani Guerdjikova (Cergy)
May 18, 2011
Economics of Adaptation to Climate Change

5 / 17
The Model

- Finite community of farmers of size I.
- Technologies (crops): $A = \{a_O; a_N\}$
 - a_O: traditional, "old" technology;
 - a_N: alternative, "new", crop.
- Outputs: $R = \{\bar{r}; r\}$.
- Information is given in form of a data set summarizing all past choices and outcomes:
 $$D = ((a_t^i, r_t^i)_{i \in I})_{t \in T}.$$
The Model

- Finite community of farmers of size I.
- Technologies (crops): $A = \{a_O; a_N\}$
 - a_O: traditional, "old" technology;
 - a_N: alternative, "new", crop.
- Outputs: $R = \{\bar{r}; r\}$.
- Information is given in form of a data set summarizing all past choices and outcomes:
 $$D = \left(\left(a_t^i, r_t^i\right)_{i \in I}\right)_{t \in T}.$$
- no asymmetric information
The Model

- Finite community of farmers of size I.
- Technologies (crops): $A = \{a_O; a_N\}$
 - a_O: traditional, "old" technology;
 - a_N: alternative, "new", crop.
- Outputs: $R = \{\bar{r}; r\}$.
- Information is given in form of a data set summarizing all past choices and outcomes:
 \[D = \left((a_t^i, r_t^i)_{i \in I} \right)_{t \in T}. \]
 - no asymmetric information
 - perfect memory
Evaluation of technology a by agent i given data set D:

$$V^i(a; D) = \alpha_i \max_{p \in H^i_a(D)} u \cdot p + (1 - \alpha_i) \min_{p \in H^i_a(D)} u \cdot p$$
Case-Based Decision Making under Ambiguity

- Evaluation of technology a by agent i given data set D:

$$V^i(a; D) = \alpha_i \max_{p \in H^i_a(D)} u \cdot p + (1 - \alpha_i) \min_{p \in H^i_a(D)} u \cdot p$$

- $H^i_a(D)$ is the set of probability distributions agent i assigns to action a given data set D.
Case-Based Decision Making under Ambiguity

- Evaluation of technology a by agent i given data set D:

$$V^i(a; D) = \alpha_i \max_{p \in H^i_a(D)} u \cdot p + (1 - \alpha_i) \min_{p \in H^i_a(D)} u \cdot p$$

- $H^i_a(D)$ is the set of probability distributions agent i assigns to action a given data set D.
- α_i is the degree of optimism and $(1 - \alpha_i)$ is the degree of pessimism.
Evaluation of technology a by agent i given data set D:

$$V^{i}(a; D) = \alpha_{i} \max_{p \in H^{i}_{a}(D)} u \cdot p + (1 - \alpha_{i}) \min_{p \in H^{i}_{a}(D)} u \cdot p$$

- $H^{i}_{a}(D)$ is the set of probability distributions agent i assigns to action a given data set D.
- α_{i} is the degree of optimism and $(1 - \alpha_{i})$ is the degree of pessimism.
- u — utility function with $u(\bar{r}) = 1$, $u(r) = 0$.

$$H^{i}_{a}(D) = \gamma T + (1 - \gamma T) \sum_{r \in \Delta} f_{D}(a; r) \delta_{r}$$

- γ — perceived ambiguity of a data-set of length T.
- Δ — the set of all possible probability distributions on R.
- $f_{D}(a; r)$ — frequency with which $(a; r)$ is observed in data set D.
- δ_{r} — probability distribution concentrated on r.

Jürgen Eichberger
Ani Guerdjikova
May 18, 2011
Economics of Adaptation to Climate Change
Evaluation of technology a by agent i given data set D:

$$V^i(a;D) = \alpha_i \max_{p \in H^i_a(D)} u \cdot p + (1 - \alpha_i) \min_{p \in H^i_a(D)} u \cdot p$$

- $H^i_a(D)$ is the set of probability distributions agent i assigns to action a given data set D.
- α_i is the degree of optimism and $(1 - \alpha_i)$ is the degree of pessimism.
- u — utility function with $u(\bar{r}) = 1$, $u(r) = 0$.

Beliefs:

$$H^i_a(D) = \left[\gamma_T + (1 - \gamma_T) \sum_{r \in R} f_D(a';r) \right] \Delta + (1 - \gamma_T) \sum_{r \in R} f_D(a;r) \delta_r$$

- γ_T — perceived ambiguity of a data-set of length T.
- Δ — the set of all possible probability distributions on R.
- $f_D(a;r)$ — frequency with which $(a;r)$ is observed in data set D.
- δ_r — probability distribution concentrated on r.
Case-Based Decision Making under Ambiguity

- Evaluation of technology a by agent i given data set D:
 \[
 V^i(a; D) = \alpha_i \max_{p \in H^i_a(D)} u \cdot p + (1 - \alpha_i) \min_{p \in H^i_a(D)} u \cdot p
 \]

- $H^i_a(D)$ is the set of probability distributions agent i assigns to action a given data set D.
- α_i is the degree of optimism and $(1 - \alpha_i)$ is the degree of pessimism.
- u — utility function with $u(\bar{r}) = 1$, $u(r) = 0$.

Beliefs:

\[
H^i_a(D) = \left[\gamma_T + (1 - \gamma_T) \sum_{r \in R} f_D(a'; r) \right] \Delta + (1 - \gamma_T) \sum_{r \in R} f_D(a; r) \delta_r
\]

- γ_T — perceived ambiguity of a data-set of length T.
Case-Based Decision Making under Ambiguity

- Evaluation of technology \(a \) by agent \(i \) given data set \(D \):
 \[
 V^i(a; D) = \alpha_i \max_{p \in H^i_a(D)} u \cdot p + (1 - \alpha_i) \min_{p \in H^i_a(D)} u \cdot p
 \]

- \(H^i_a(D) \) is the set of probability distributions agent \(i \) assigns to action \(a \) given data set \(D \).
- \(\alpha_i \) is the degree of optimism and \((1 - \alpha_i) \) is the degree of pessimism
- \(u \) — utility function with \(u(\bar{r}) = 1, u(r) = 0 \).

Beliefs:

\[
H^i_a(D) = \left[\gamma_T + (1 - \gamma_T) \sum_{r \in R} f_D(a'; r) \right] \Delta + (1 - \gamma_T) \sum_{r \in R} f_D(a; r) \delta_r
\]

- \(\gamma_T \) — perceived ambiguity of a data-set of length \(T \)
- \(\Delta \) — the set of all possible probability distributions on \(R \);
Case-Based Decision Making under Ambiguity

- Evaluation of technology a by agent i given data set D:

$$V^i(a; D) = \alpha_i \max_{p \in H^i_a(D)} u \cdot p + (1 - \alpha_i) \min_{p \in H^i_a(D)} u \cdot p$$

- $H^i_a(D)$ is the set of probability distributions agent i assigns to action a given data set D.
- α_i is the degree of optimism and $(1 - \alpha_i)$ is the degree of pessimism.
- u — utility function with $u(\bar{r}) = 1$, $u(r) = 0$.

- Beliefs:

$$H^i_a(D) = \left[\gamma_T + (1 - \gamma_T) \sum_{r \in R} f_D(a'; r) \right] \Delta + (1 - \gamma_T) \sum_{r \in R} f_D(a; r) \delta_r$$

- γ_T — perceived ambiguity of a data-set of length T.
- Δ — the set of all possible probability distributions on R.
- $f_D(a; r)$ — frequency with which $(a; r)$ is observed in data set D.

Jürgen Eichberger (Heidelberg)

Ani Guerdjikova (Cergy)
Case-Based Decision Making under Ambiguity

- Evaluation of technology a by agent i given data set D:
 \[V^i(a; D) = \alpha_i \max_{p \in H^i_a(D)} \left(u \cdot p + (1 - \alpha_i) \min_{p \in H^i_a(D)} u \cdot p \right) \]

 - $H^i_a(D)$ is the set of probability distributions agent i assigns to action a given data set D.
 - α_i is the degree of optimism and $(1 - \alpha_i)$ is the degree of pessimism.
 - u — utility function with $u(\bar{r}) = 1$, $u(r) = 0$.

- Beliefs:
 \[H^i_a(D) = \left[\gamma_T + (1 - \gamma_T) \sum_{r \in R} f_D(a'; r) \right] \Delta + (1 - \gamma_T) \sum_{r \in R} f_D(a; r) \delta_r \]

 - γ_T — perceived ambiguity of a data-set of length T.
 - Δ — the set of all possible probability distributions on R.
 - $f_D(a; r)$ — frequency with which $(a; r)$ is observed in data set D.
 - δ_r — probability distribution concentrated on r.

Jürgen Eichberger (Heidelberg)
Ani Guerdjikova (Cergy)
Optimists and Pessimists

- Optimists: $\alpha_o = 1$, share ω
Optimists and Pessimists

- Optimists: $\alpha_o = 1$, share ω
 - assign a weight of 1 to the best probability distribution in $H_{\alpha}^i(D)$;

- Pessimists: $\alpha_p = 0$, share $(1-\omega)$
 - assign a weight of 1 to the worst probability distribution in $H_{\alpha}^i(D)$;
 - interpret the lack of evidence as failure;
 - choose the technology with the highest number of successes:
 $$a_p(D) = \inf_{a_N} \inf_{r} D(a_N;r) < \inf_{a_O} \inf_{r} D(a_O;r)$$
Optimists and Pessimists

- Optimists: $\alpha_o = 1$, share ω
 - assign a weight of 1 to the best probability distribution in $H^i_\alpha(D)$;
 - interpret the lack of evidence as success;
Optimists and Pessimists

- **Optimists**: $\alpha_o = 1$, share ω
 - assign a weight of 1 to the best probability distribution in $H^i_a (D)$;
 - interpret the lack of evidence as success;
 - choose the technology with the least number of failures in the data:

 \[
 a^o (D) = \begin{cases}
 a_N & \text{iff } f_D (a_N; r) < f_D (a_O; r) \\
 \{ a_O; a_N \} & \text{iff } f_D (a_N; r) = f_D (a_O; r) \\
 a_O & \text{iff } f_D (a_N; r) > f_D (a_O; r)
 \end{cases}
 \]
Optimists and Pessimists

- Optimists: $\alpha_o = 1$, share ω
 - assign a weight of 1 to the best probability distribution in $H^i_a(D)$;
 - interpret the lack of evidence as success;
 - choose the technology with the least number of failures in the data:

$$a^o(D) = \begin{cases}
 a_N & \text{iff } f_D(a_N; r) < f_D(a_O; r) \\
 \{a_O; a_N\} & \text{iff } f_D(a_N; r) = f_D(a_O; r) \\
 a_O & \text{iff } f_D(a_N; r) > f_D(a_O; r)
\end{cases}$$

- Pessimists: $\alpha_p = 0$, share $(1 - \omega)$
Optimists and Pessimists

Optimists: $\alpha_o = 1$, share ω

- assign a weight of 1 to the best probability distribution in $H_\alpha^i(D)$;
- interpret the lack of evidence as success;
- choose the technology with the least number of failures in the data:

\[
a^o(D) = \begin{cases}
a_N & \text{iff } f_D(a_N; r) < f_D(a_O; r) \\
\{a_O; a_N\} & \text{iff } f_D(a_N; r) = f_D(a_O; r) \\
a_O & \text{iff } f_D(a_N; r) > f_D(a_O; r)
\end{cases}
\]

Pessimists: $\alpha_p = 0$, share $(1 - \omega)$

- assign a weight of 1 to the worst probability distribution in $H_\alpha^i(D)$;
Optimists and Pessimists

- **Optimists:** $\alpha_o = 1$, share ω
 - assign a weight of 1 to the best probability distribution in $H^i_a(D)$;
 - interpret the lack of evidence as success;
 - choose the technology with the least number of failures in the data:

 $$a^o(D) = \begin{cases}
 a_N & \text{iff } f_D(a_N; r) < f_D(a_O; r) \\
 \{a_O; a_N\} & \text{iff } f_D(a_N; r) = f_D(a_O; r) \\
 a_O & \text{iff } f_D(a_N; r) > f_D(a_O; r)
 \end{cases}$$

- **Pessimists:** $\alpha_p = 0$, share $(1 - \omega)$
 - assign a weight of 1 to the worst probability distribution in $H^i_a(D)$;
 - interpret the lack of evidence as failure;
Optimists and Pessimists

- **Optimists**: $\alpha_o = 1$, share ω
 - assign a weight of 1 to the best probability distribution in $H^i_a(D)$;
 - interpret the lack of evidence as success;
 - choose the technology with the least number of failures in the data:
 $$a^o(D) = \begin{cases} a_N & \text{iff } f_D(a_N; r) < f_D(a_O; r) \\ \{a_O; a_N\} & \text{iff } f_D(a_N; r) = f_D(a_O; r) \\ a_O & \text{iff } f_D(a_N; r) > f_D(a_O; r) \end{cases}$$

- **Pessimists**: $\alpha_p = 0$, share $(1 - \omega)$
 - assign a weight of 1 to the worst probability distribution in $H^i_a(D)$;
 - interpret the lack of evidence as failure;
 - choose the technology with the highest number of successes:
 $$a^p(D) = \begin{cases} a_N & \text{iff } f_D(a_N; \bar{r}) > f_D(a_O; \bar{r}) \\ \{a_N; a_O\} & \text{iff } f_D(a_N; \bar{r}) = f_D(a_O; \bar{r}) \\ a_O & \text{iff } f_D(a_N; \bar{r}) < f_D(a_O; \bar{r}) \end{cases}$$
Two regimes of returns for the old technology:

Regime 1 — before climate change:

\[\Pr_{fr}^{\text{og}} = q > \frac{1}{2} \]

Regime 2 — after climate change:

\[\Pr_{fr}^{\text{og}} = q < \frac{1}{2} \]

\[\Pr_{fr}^{\text{ng}} = q > \frac{1}{2} \]

Agents are unaware of the regime change and do not know the probabilities of success for the two technologies.
Two regimes of returns for the old technology:

Regime 1 — before climate change:

\[\Pr \{ \bar{r} \mid a_O \} = q > \frac{1}{2} \]

Regime 2 — after climate change:

\[\Pr \{ \bar{r} \mid a_N \} = q < \frac{1}{2} \]

Agents are unaware of the regime change and do not know the probabilities of success for the two technologies.
Two regimes of returns for the old technology:

- Regime 1 — before climate change:
 \[\Pr \{ \bar{r} \mid a_O \} = q > \frac{1}{2} \]

- Regime 2 — after climate change:
 \[\Pr \{ \bar{r} \mid a_O \} = 1 - q < \frac{1}{2} \]
 \[\Pr \{ \bar{r} \mid a_N \} = q > \frac{1}{2} \]
Two regimes of returns for the old technology:

- Regime 1 — before climate change:
 \[\Pr \{ \tilde{r} \mid a_O \} = q > \frac{1}{2} \]

- Regime 2 — after climate change:
 \[\Pr \{ \tilde{r} \mid a_O \} = 1 - q < \frac{1}{2} \]
 \[\Pr \{ \tilde{r} \mid a_N \} = q > \frac{1}{2} \]

Agents are unaware of the regime change and do not know the probabilities of success for the two technologies.
Defining Steady States

- A steady state is defined by a tuple of limit frequencies \((\phi^*_N; \phi^*_p)\), with which agents of type \(i \in \{o; p\}\) hold the new technology.

- These limit frequencies give rise to limit frequencies of observations in the data:

 \[
 f (a_N; \bar{r}) = \left[\omega \phi^*_N + (1 - \omega) \phi^*_p \right] q \\
 f (a_O; \bar{r}) = \left[\omega (1 - \phi^*_N) + (1 - \omega) (1 - \phi^*_p) \right] (1 - q)
 \]

- In the steady state, the limit frequencies \(\phi^*_N\) and \(\phi^*_p\) have to be optimal given the generated limit frequencies of observations:

 \[
 \phi^*_p = \begin{cases}
 1, & f (a_N; \bar{r}) > f (a_O; \bar{r}) \\
 [0; 1] & f (a_N; \bar{r}) = f (a_O; \bar{r}) \\
 0, & f (a_N; \bar{r}) < f (a_O; \bar{r})
 \end{cases} \\
 \phi^*_N = \begin{cases}
 1, & f (a_N; r) < f (a_O; r) \\
 [0; 1] & f (a_N; r) = f (a_O; r) \\
 0, & f (a_N; r) > f (a_O; r)
 \end{cases}
 \]
If $\omega > 1 - q$, the unique steady-state is given by: $\phi^*_{N} = \frac{\omega + q - 1}{\omega}$, $\phi^*_{P} = 1$.
If $\omega \leq 1 - q$, the system has three steady-states:
Stability of Steady States and Welfare

If $\omega \leq 1 - q$, the steady states are ordered in terms of average expected payoffs:

$$(\phi_{N}^{o} = 0; \phi_{N}^{p} = 1) \succ (\phi_{N}^{o} = 1; \phi_{N}^{p} = \frac{1-\omega-q}{1-\omega}) \succ (\phi_{N}^{o} = 1; \phi_{N}^{p} = 0).$$
If $\omega \leq 1 - q$, the steady states are ordered in terms of average expected payoffs:

$$(\phi^o_N = 0; \phi^p_N = 1) \succ (\phi^o_N = 1; \phi^p_N = \frac{1-\omega-q}{1-\omega}) \succ (\phi^o_N = 1; \phi^p_N = 0).$$

The payoff in the steady state $(\phi^o_N = 0; \phi^p_N = 1)$ is larger than the payoff in the unique steady state for $\omega > 1 - q$ and is maximized at $\omega = 0$.
If $\omega \leq 1 - q$, the steady states are ordered in terms of average expected payoffs:

$$
(\phi^*_o = 0; \phi^*_p = 1) \succ (\phi^*_o = 1; \phi^*_p = \frac{1 - \omega - q}{1 - \omega}) \succ (\phi^*_o = 1; \phi^*_p = 0).
$$

The payoff in the steady state $(\phi^*_o = 0; \phi^*_p = 1)$ is larger than the payoff in the unique steady state for $\omega > 1 - q$ and is maximized at $\omega = 0$.

However, when ω is close to 0 and the initial state of the economy is $(\phi^o_N = 0; \phi^p_N = 0)$, the economy converges with high probability to the worst steady state, $(\phi^*_o = 1; \phi^*_p = 0)$.
If $\omega \leq 1 - q$, the steady states are ordered in terms of average expected payoffs:

$$(\phi^*_N = 0; \phi^*_N = 1) \succ (\phi^*_N = 1; \phi^*_N = \frac{1-\omega-q}{1-\omega}) \succ (\phi^*_N = 1; \phi^*_N = 0).$$

The payoff in the steady state $(\phi^*_N = 0; \phi^*_N = 1)$ is larger than the payoff in the unique steady state for $\omega > 1 - q$ and is maximized at $\omega = 0$.

However, when ω is close to 0 and the initial state of the economy is $(\phi^*_N = 0; \phi^*_N = 0)$, the economy converges with high probability to the worst steady state, $(\phi^*_N = 1; \phi^*_N = 0)$.

Hence, the optimal share of optimists is between $(0; 1)$.
Consider an economy with a low share of optimists, $\omega \leq 1 - q$.
Consider an economy with a low share of optimists, $\omega \leq 1 - q$.

Assume that the initial state is $(\phi_N^o = 0; \phi_N^p = 0)$ and there are T observations of a_O with frequency of success $f_D (a_O; \bar{r}) \in (1 - q; q)$.
Consider an economy with a low share of optimists, \(\omega \leq 1 - q \).

Assume that the initial state is \((\phi^o_N = 0; \phi^p_N = 0) \) and there are \(T \) observations of \(a_O \) with frequency of success \(f_D (a_O; \bar{r}) \in (1 - q; q) \).

An effective policy stimulating early adoption will provide incentives to the pessimists to switch to the new technology so that the economy could transition to the optimal steady state \((\phi_*^o = 0; \phi_*^p = 1) \).
A subsidy G is paid to everyone who adopts in the first period.
Subsidies for Early Adopters

- A subsidy G is paid to everyone who adopts in the first period.
- An effective subsidy will induce pessimists to choose a_N, hence it has to contain an "ambiguity premium".
A subsidy G is paid to everyone who adopts in the first period.

An effective subsidy will induce pessimists to choose a_N, hence it has to contain an "ambiguity premium".

The government cannot distinguish between optimists and pessimists, hence, the subsidy, if effective, will be received by everyone in the society.
Subsidies for Early Adopters

- A subsidy G is paid to everyone who adopts in the first period.
- An effective subsidy will induce pessimists to choose a_N, hence it has to contain an "ambiguity premium".
- The government cannot distinguish between optimists and pessimists, hence, the subsidy, if effective, will be received by everyone in the society.
- It follows that the effective subsidy might be prohibitively costly, i.e., the price of inducing pessimists to choose the new technology might exceed the increase in expected returns.
Providing Additional Information

The government provides an additional data set \tilde{D} of length \tilde{T} with $\frac{\tilde{T}}{2}$ observations of a_O and $\frac{\tilde{T}}{2}$ observations of a_N. The data set \tilde{D} is representative of the performance of the two technologies:

$$f_{\tilde{D}}(a_O; \bar{r}) = \gamma_t \sum_{r} R_T f_{\tilde{D}}(a_0; r) + \tilde{s} $$

The relevance of the information in \tilde{D} is $\tilde{s}_t(0; 1)$.

Given the data set $D[\tilde{D}$, the beliefs of agent i about technology a are:

$$H_i a_{D[\tilde{D}]} = \gamma_t \sum_{r} R_T f_{\tilde{D}}(a_0; r) + \tilde{s} \tilde{s} $$

Jürgen Eichberger (Heidelberg)
Ani Guerdjikova (Cergy)
May 18, 2011
Economics of Adaptation to Climate Change
Providing Additional Information

- The government provides an additional data set \tilde{D} of length \tilde{T} with $\frac{T}{2}$ observations of a_O and $\frac{T}{2}$ observations of a_N.
- The data set \tilde{D} is representative of the performance of the two technologies:

$$f_{\tilde{D}}(a_O; \bar{r}) = \frac{(1 - q)}{2}, \quad f_{\tilde{D}}(a_N; \bar{r}) = \frac{q}{2}.$$
Providing Additional Information

- The government provides an additional data set \tilde{D} of length \tilde{T} with $\tilde{T}/2$ observations of a_O and $\tilde{T}/2$ observations of a_N.
- The data set \tilde{D} is representative of the performance of the two technologies:
 \[f_{\tilde{D}} (a_O; \bar{r}) = \frac{(1 - q)}{2}, \quad f_{\tilde{D}} (a_N; \bar{r}) = \frac{q}{2}. \]
- The relevance of the information in \tilde{D} is $\tilde{s} \in (0; 1)$.
Providing Additional Information

- The government provides an additional data set \(\tilde{D} \) of length \(\tilde{T} \) with \(\frac{\tilde{T}}{2} \) observations of \(a_O \) and \(\frac{\tilde{T}}{2} \) observations of \(a_N \).
- The data set \(\tilde{D} \) is representative of the performance of the two technologies:

\[
f_{\tilde{D}}(a_O; \bar{r}) = \frac{(1 - q)}{2}, \quad f_{\tilde{D}}(a_N; \bar{r}) = \frac{q}{2}.
\]

- The relevance of the information in \(\tilde{D} \) is \(\tilde{s} \in (0; 1) \).
- Given the data set \(\tilde{D} \), the beliefs of agent \(i \in \{o, p\} \) about technology \(a \) are:

\[
H^i_a(D \cup \tilde{D}) = \left[\gamma_{T'} + (1 - \gamma_{T'}) \frac{\sum_{r \in R} [Tf_{D}(a'; r) + \tilde{s}\tilde{T}f_{\tilde{D}}(a'; r)]}{T + \tilde{s}\tilde{T}} \right]
\]

\[
+ (1 - \gamma_{T'}) \frac{\sum_{r \in R} [Tf_{D}(a; r) + \tilde{s}\tilde{T}f_{\tilde{D}}(a; r)] \delta_r}{T + \tilde{s}\tilde{T}}.
\]
Stimulating Adoption by Providing Additional Information

- Pessimists and optimists differ w.r.t. their willingness to purchase additional information.
Pessimists and optimists differ w.r.t. their willingness to purchase additional information.

For a given frequency of observations,
Pessimists and optimists differ w.r.t. their willingness to purchase additional information.

For a given frequency of observations,
- optimists prefer to decide based on a shorter data set;
Pessimists and optimists differ w.r.t. their willingness to purchase additional information.

For a given frequency of observations,
- optimists prefer to decide based on a shorter data set;
- pessimists prefer to decide based on a longer data set.
Pessimists and optimists differ w.r.t. their willingness to purchase additional information.

For a given frequency of observations,
- optimists prefer to decide based on a shorter data set;
- pessimists prefer to decide based on a longer data set.

If $\frac{sT}{2}$ is sufficiently large, i.e., the additional data is either sufficiently relevant or has sufficiently many observations, then:
Pessimists and optimists differ w.r.t. their willingness to purchase additional information.

For a given frequency of observations,

- optimists prefer to decide based on a shorter data set;
- pessimists prefer to decide based on a longer data set.

If $\frac{s\tilde{T}}{2}$ is sufficiently large, i.e., the additional data is either sufficiently relevant or has sufficiently many observations, then:

- pessimists will be willing to pay a strictly positive amount to obtain \tilde{D};
Stimulating Adoption by Providing Additional Information

- Pessimists and optimists differ w.r.t. their willingness to purchase additional information.
- For a given frequency of observations,
 - optimists prefer to decide based on a shorter data set;
 - pessimists prefer to decide based on a longer data set.
- If $\frac{s \bar{T}}{2}$ is sufficiently large, i.e., the additional data is either sufficiently relevant or has sufficiently many observations, then:
 - pessimists will be willing to pay a strictly positive amount to obtain \tilde{D};
 - pessimists will switch to the new technology upon obtaining \tilde{D}.
Pessimists and optimists differ w.r.t. their willingness to purchase additional information.

For a given frequency of observations,
- optimists prefer to decide based on a shorter data set;
- pessimists prefer to decide based on a longer data set.

If \(\frac{s\tilde{T}}{2} \) is sufficiently large, i.e., the additional data is either sufficiently relevant or has sufficiently many observations, then:
- pessimists will be willing to pay a strictly positive amount to obtain \(\tilde{D} \);
- pessimists will switch to the new technology upon obtaining \(\tilde{D} \).

The behavior of optimists will remain unchanged and they will not be willing to purchase the additional data.
Conclusion

- A model of technology adoption triggered by climate change.
- Characterized and described the stability properties of the steady states.
- Discussion of the welfare properties and identification of the role of different types of agents in the process of innovation.
- Evaluation of two possible policies designed to stimulate innovation.