The existence of Poverty Traps: Old Question - New Answer. Evidence from Rural Mexico

George Washington University Seminar

Vera Chiodi*

*Paris School of Economics & Poverty Action Lab - Europe

November 13th, 2009

Vera Chiodi (PSE & J-PAL)

Poverty traps in rural Mexico

Plan

1 Introduction

2 The Data

3 Evidence of Poverty Traps

4 Conclusion

- Poverty associated with informational/market failures that affect the poor more severely
- Poverty traps as a major cause of persistent inequality and a serious limitation to growth
- Panel of poor rural HH in Mexico for the last decade
 - Identify their potential for asset accumulation
- But, poverty traps may hinder this process

- Credit constraints prevent the poor from starting up investment projects or accumulating human capital
- The initial wealth distribution plays a determinant role in the development path (Banerjee-Newman, 1993) (Piketty, 1997; Aghion-Bolton, 1997)
- Here, partial equilibrium accumulation dynamics: Galor-Zeira (1993) where dynasties accumulate (human capital) independently from one another and may fall into poverty traps
- On the other hand.... Macro-based poverty traps: aggregate non-convexities and aggregate coordination failures

Empirical Evidence on Poverty Traps: what we know so far

- Bifurcated asset dynamics in South Africa (Adato, Carter, May 2006)
 - Qualitative data: social capital & networks
- Long term Effects of Short term Shocks (Carter, Little, Mogues 2007)
 - Honduras & Ethiopia
 - In the wake of environmental shocks
 - Adopt costly coping strategies
- Asset or consumption smoothing in rural Zimbabwe (Hoddinott, 2006)
 - $\bullet\,$ Temporary income shocks & permanent consequences across and within HH
 - Impact of shocks by levels of asset holdings and by individual level

Introduction

Multiple vs. Single Equilibrium Asset Growth Paths

- Threshold below which unable to accumulate assets
- Converge to a low asset/low income equilibrium
- Large positive shocks or an improvement in the returns

Introduction

The existence of a poverty trap

- Poverty trap arises when:
 - 1 Locally increasing returns over a range of levels of asset
 - Presence of a market failure: high rates of return for Mexican Microenterprises but severe capital constraints (Mckenzie and Woodruff, 2006)
- $\bullet\,$ If diminishing marginal returns over all levels $\to\,$ dynamic path as a globally concave curve
 - $\, \bullet \,$ If this growth regime holds \rightarrow only one equilibrium exists

- Empirical test for poverty traps, through several empirical strategies
 - Non-parametric and parametric
 - Calculation of the stable and unstable equilibrium
- Find differences in dynamic paths by exploring heterogeneity accross households
 - Divide low-ability poor and high-ability poor

The Data

The data

New data available from a panel of poor HH in rural Mexico

- 10% random sample of poor rural localities
- Representative of the extreme rural poor
- Panel of 3 time observations, 1996 to 2006
- Around 4,400 households from 190 rural localities

	% below the PL
Period I	76
Period II	78
Period III	66

Marginal Returns: asset index

Marginal Returns: labor force

Marginal Returns: education

Empirical investigation of the welfare dynamics

- Uni-dimensional measure requiring:
 - 1 Either complete knowledge of the market value of each asset,
 - 2 or the construction of an asset index with two possible strategies:
 Factor Analysis
 - Regression analysis (monthly per capita income of 47 US\$)

Empirical Strategy I : Factor Analysis

- Asset index using factor analysis
 - 1 Maintain initial weights to the following years
- Three categories:
 - HH durables (ownership of radios, TV, refrigerator, gas stove, washing machine and vehicules)
 - Housing quality (irrigation to land, electricity earthfloor, roof weak, animals, owned house, use of agricultural land)
 - Stock of human capital (years of education of the hh head)

Empirical Strategy II : Regression Analysis

- Prices often unknown or difficult to determine, methodology used by Adato et al. (2004); McKenzie (2005).
- HH income regressed on HH's assets, its square and cube, along with interactions
- HH asset index is the HH income predicted

$$y_{i,t} = \beta_0 + \beta_1 \mathbf{x}_{i,t} + e_{i,t}$$

- $y_{i,t}$ the per-capita income by HH
- **x**_{*i*,*t*} a vector of HH characteristics

Non-parametric Estimation of Asset Dynamics 1997-2006

Vera Chiodi (PSE & J-PAL)

Key findings

- HH can be converging to:
 - 1 The poverty trap equilibrium (if asset index < 1.39 or 0.8 PLUs = a monthly per capita income of 38 US\$)
 - 2 Towards the stable equilibrium or the *low* equilibrium (if 1.39 < asset index < 2.1)</p>
 - 3 To a higher equilibrium (if asset index > 2.1 or 4,4 PLUs = a monthly per capita income of 199 US\$)

Assets Corresponding to the Cut-Off Levels of the Index:

Variable	Index = 1,39	Index = 2,1
years of education of the hh head	6	16
irrigation to land	1	1
electricity	1	1
earthfloor	0	0
roof weak	0	1
animals	0	0
owned house	1	1
use of agricultural land	0	0
Ownership of:		
refrigerator	0	1
gas stove	1	1
radio	1	1
TV	1	1
washing machine	0	1
vehicules	1	1

Alternative Strategy: Predict Unobserved Heterogeneity

• A fixed effect in the regression of income on assets is predicted $\widehat{\eta}_i$

$$y_{i,t} = \beta_0 + \beta_1 \mathbf{x}_{i,t} + \eta_i + e_{i,t}$$

- η_i time-invariant HH level unobserved heterogeneity
- Split the distribution function of the FE in two cut-offs & re-run lowess estimator

Low and High ability HH

2,2 PLUs corresponds to a monthly per capita income of 98 US\$

Vera Chiodi (PSE & J-PAL)

Poverty traps in rural Mexico

November 13th, 2009 22 / 41

Confidence Intervals

- Cubic function

45° line

1.5

Lagged Asset Index

Linear Partial Regressions

.4

.2

ń

0

.5

4

Lagged Asset Index

Full Sample (left) & High-ability Sample (right)

.5

2.4 -

2.2

2

1.8

1.6

1.4 Asset Index

1.2

.8

.6

.4

.2 -

0

n

Cubic function

2

45° line

1.5

Kernel-weighted Local Polynomial Smooth

Full Sample (left) & High-ability Sample (right)

Spline Regressions

Full Sample (left) & High-ability Sample (right)

Nonlinear Asset Dynamics - parametric strategy

Generating process of the asset position is:

$$A_{i,t}^* = \beta_0 + \beta_1 A_{i,t-1}^* + \beta_2 (A_{i,t-1}^*)^2 + \beta_3 (A_{i,t-1}^*)^3 + \alpha_i + \mu_{i,t}$$
(1)

If the asset index map is over the 45° line, non convexities doesn't imply PT. Condition that the derivative:

$$g_i(A_{i,t-1}^*)|_{A_{i,t}^*=A_{i,t-1}^*} > 1$$
⁽²⁾

Must be evaluated in the roots of the equation (1)

GMM Estimation of equation (1)

Three specifications (linear, quadratic and cubic):

β_1	-0.133	-1.006	-0.671
	(-2.74)***	(-11.12)***	(-7.39)***
β_2		0.927	0.791
		(14.60)***	(5.38)***
β_3			-0.092
			(-1.09)***
Observations	8,730	8,730	8,730

The map of assets cuts the line of 45° from below

Lineal specification	ı	Quadractic specification		Cubic specification	
Solution (1)	Derivative (2)	Solution (1)	Derivative (2)	Solution (1)	Derivative (2)
0.74	-0.133	1.53	1.824	2.19	1.459
(1) Solution of equation (1).					
(2) Derivative of the polynomial evaluated in the solution.					

1 Introduction

2 The Data

3 Evidence of Poverty Traps

Concluding remarks

- Empirical evidence of multiple equilibria
 - Substantial minimum level of asset holdings is necessary to escape from the low equilibrium
 - Heterogeneity accross HH: *intrinsic characteristics* results: a particular intervention to change the fundamentals
- Results
 - Stable equilibrium around a low level of 80% PL
 - $\,\circ\,$ Second equilibrium: we suggest that the HH will converge to the higher equilibrium (slope $>\!1)$

Thank you!

HH Years of Education Dynamics, by type of HH

Vera Chiodi (PSE & J-PAL)

Poverty traps in rural Mexico

November 13th, 2009 32 / 41

Basic Regressions: Assets

$$A_{it} = \alpha_1 A_{i,t-1} + \alpha_2 A_{i,t-1}^2 + \alpha_3 A_{i,t-1}^3 + \alpha_4 A_{i,t-1}^4$$
(3)

VARIABLES	(1) Animals	(2) Land		
Lag	0.510*** (0.0413)	0.242*** (0.0661)		
Lag (squared)	-0.0600*** (0.0146)	-0.00747** (0.00319)		
Lag (cubic)	0.00278** (0.00122)	^{6.98e-05*} (3.80e-05)		
Lag (4th degree)	^{-4.45e-05} (2.88e-05)	-1.94e-07 (1.19e-07)		
Constant	0.274*** (0.0116)	^{2.119***} (0.199)		
Observations R^2	8730 0.092	8730 0.071		
*** p<0.01, ** p<0.05, * p<0.1 Robust standard errors in parentheses				

Asset Dynamics for HH with Migrants

Remittance income corresponds to 0,72 PLUs

Vera Chiodi (PSE & J-PAL)

Poverty traps in rural Mexico

Asset Dynamics for HH without Migrants

Vera Chiodi (PSE & J-PAL)

November 13th, 2009 35 / 41

Asset Dynamics for HH with Migrants, by level of ability

Vera Chiodi (PSE & J-PAL)

Poverty traps in rural Mexico

November 13th, 2009 36 / 41

Asset Dynamics for HH without Migrants, by level of ability

Vera Chiodi (PSE & J-PAL)

Poverty traps in rural Mexico

November 13th, 2009 37 / 41

Nonparametric regression curve using Lowess, as well as an OLS cubic regression curve

(A.Colin Cameron and Pravin K.Trivedi; Microeconometrics - Methods and applications)

Three-wave-average incomes and their compositions, by wave 1 hh type

	All	Head indigenous	Female head	Work adults per $hh > 2$	Head age 65+	Hh diversif. > 2
Total hh income	21,245.17	17,564.39	15,244.07	27,894.59	15,653.60	28,638.77
Source as % of hh inc.:						
Agricultural	34.4	34.8	25.2	36.0	30.1	30.5
Non-agricultural	28.4	25.1	30.1	29.1	20.7	35.6
Self-employment	13.2	17.5	15.0	12.2	15.1	13.7
Transfers	15.7	12.0	22.1	15.4	25.8	9.3
Other	8.3	10.6	7.7	7.3	8.3	10.8

Asset index by level of ability

Vera Chiodi (PSE & J-PAL)

November 13th, 2009 40 / 41

Years of education of the HH head by level of ability

Vera Chiodi (PSE & J-PAL)