Perspectives on Financial Sector Risk Assessment Methodologies

Dr. Laura Kodres
IMF Research Department
April 24, 2006
Overview

- What are we trying to accomplish with financial sector risk assessments?
- What are the approaches currently in use?
- What can we learn from them and what are their limitations?
- How do we move forward to address 21st century financial markets?
What are we trying to accomplish?

- Anticipate financial sector distress (early warning systems).
- Understand linkages and thus better predict changes from various “shocks” and policy changes.
- Measure public sector contingent liabilities and anticipate potential difficulties.
- Improve efficiency and smooth functioning of financial systems to increase growth and welfare.
At what level of analysis?

- Global
- Regional
- Country
- Sectors
- Types and/or groups of institutions
- An individual (“systemically important”) institution
Financial exposures (stocks and flows) between sectors

- Household sector
- Corporate sector
- Public sector
- External sector
- Banking system
- Financial markets
- Other financial intermediaries
Basic Financial Sector Risks

- Credit risk / Counterparty risk
- Market risk
 - Exchange rate risk
 - Interest rate risk
 - Equity price risk
 - Derivatives market risk
- Liquidity risk
- Operational risk
 - Legal risk
Methodology

- Tailored to type of concern
 - Ex: Effects of a credit crunch on domestic investment
 - Ex: Systemic distress caused by default of financial institution(s)
 - Ex: Likelihood of sovereign credit default leading to banking crisis
 - Ex: Exchange rate depreciation affecting banking sector through indirect credit risk
- Tailored to available information/data
Types of Methodologies

- Macro-models
- Contingent claims/finance models
- Market prices/quantities
- Stress tests
- Traditional accounting indicators
Accounting Data Orientation

- Across time and across “comparables”
- Profitability measures
 - ROA, ROE, Income statement
 - Revenue sources
 - Costs
- Risks measures
 - Capital ratios (CARs)
 - Exposures to “risky” areas
 - Contingent claims
Stress Tests

- Construction of scenarios and institutional data as important as results.
 - Usually exposures are taken at a point in time (not typically dynamic); exposure data collected infrequently.
 - Propagation typically ignored—focus on solvency, capital-adequacy, performance.
Stress Test on Banking System: Albania

<table>
<thead>
<tr>
<th>%Δ Effect on CAR</th>
<th>%Δ Effect on ROA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exchange rates</td>
<td></td>
</tr>
<tr>
<td>20 percent lek depreciation</td>
<td>+1.72</td>
</tr>
<tr>
<td>20 percent USD depreciation</td>
<td>-2.6</td>
</tr>
<tr>
<td>20 percent Euro appreciation</td>
<td>-2.1</td>
</tr>
<tr>
<td>30 percent lek depreciation with indirect credit risk</td>
<td>-0.48</td>
</tr>
<tr>
<td>Interest rates</td>
<td></td>
</tr>
<tr>
<td>5 percentage point rise in lek yield curve</td>
<td>-0.85</td>
</tr>
<tr>
<td>5 percentage point rise in USD yield curve</td>
<td>-0.6</td>
</tr>
<tr>
<td>5 percentage point rise in Euro yield curve</td>
<td>-0.85</td>
</tr>
<tr>
<td>5 percentage point rise in all yield curves</td>
<td>-2.44</td>
</tr>
<tr>
<td>NPLs</td>
<td></td>
</tr>
<tr>
<td>10 percent deterioration in standard loans</td>
<td>-1.97</td>
</tr>
</tbody>
</table>
Stress Tests

- Advances
 - Creative, tailored scenarios (e.g. effect of changes in strategy of a dominant bank).
 - Across sectors.
 - Allow dynamics; allow probabilistic exercises.
 - Use exposures across institutions to examine liquidity/default effects.
Prices/Quantity Analysis

- Economic data that “signal” upcoming financial sector distress
 - Basis for early warning systems for domestic currency crises (debt/GDP, deficit/GDP, reserve coverage, etc.).
 - Observe money supply growth, credit growth, reserve accumulation as signals of abundance liquidity/risk taking.
 - Stock and flow economic data not necessarily providing risk measures.
Traded Prices

- Use market “prices” to anticipate financial sector distress
 - Means/Difference
 - House prices, credit spreads, maturity/swap spreads
 - Variances
 - Options prices, risk measures, credit derivatives
 - Skewness & Kurtosis (fat-tailed)
 - “Smile” of options prices, risk-neutral PDFs
Brent Crude Oil Call Option Prices: Probability Density Function

(Sep-2006 futures contract)

- 9/22/2005
- 4/19/2006
Traded Prices

- Prices not perfect reflections of reality
 - Who is represented in the market? (A variety of participants with different needs/views.)
 - Is the market liquid? Does the price represent a “consensus” view?
 - Are there other reasons for using the market that make can bias prices?
 - Some price data better than others in anticipating big moves of systemic proportion.
Traded Prices

- Price data sometime hard to find and not timely/accurate
 - Typically better than quantity or accounting data.
 - “Stale” prices can be a problem (lack of liquidity).
 - Forward-looking prices (e.g. forwards, futures, options) and implied distributions are better than spot prices.
 - OTC markets often don’t save data for analysis (or only for proprietary reasons)—difficulty obtaining.
 - Bid/Ask spreads can sometimes interfere with interpretation (though also information in themselves).
Macro Models

- Structural macro models usually built with:
 - Specific behavioral assumptions.
 - Specific solution methods (closed-form vs. non-closed form, partial vs. general equilibrium).
 - Usually linear, but not always.
 - Often representative agents.
 - Information structure typically symmetric.
Macro Models

- Real Business Cycle (RBC) models
- General Equilibrium
- Dynamic Stochastic General Equilibrium
- Dynamic Aggregative Estimated models
- Structural VARs
Macro Models

- Systemic/disruptive financial sector issues requires (at least one of the following):
 - Possibility of default or other non-linear event of distress (collateral, margin calls).
 - Differentiated/heterogeneous participants (different motives, different starting points, different balance sheet structures).
 - Incomplete information.
 - Market imperfections (constraints to trading).
Macro Models

- **Pros**
 - Can develop “rules of thumb” that can guide policies/responses.
 - Can observe (unexpected) discontinuities.
 - Can (maybe) calibrate model with real data.
 - Develop intuition on linkages that would otherwise be difficult to see by looking at the data.
Macro Models

- Cons
 - Sometimes hard to implement for day-to-day surveillance (often complicated).
 - Sometimes difficult to calibrate since macro concepts do not directly translate into data series.
 - Subject to “Lucas critique” that relationships change and regulatory responses change during event.
 - Must be “right” about behavior assumptions (irrational behavior hard to model).
Broaden Macro Models

- Consider integrating with general equilibrium macro model if macro linkages of interest.
 - Consider features tied to individual types of risks under consideration (contagion, liquidity, solvency, market price disturbances, bankruptcies, runs).
 - Create ways for above features to "matter"—e.g. wealth effects, household default, corporate financing decisions.
Link Balance Sheets, Market Prices

Structural Credit Risk Models

- Combination of balance sheet information, market prices, and adding options theory to calculate implied assets and asset volatility.
- Provides frequent estimates of risk indicators, distance-to-distress, default probabilities, spreads.
- Is mostly applied to firms and financial institutions.
- Can be applied to the sovereign and to other sectors of an economy (data permitting).
Link Balance Sheets, Market Prices

Structural Credit Risk Models

- Can provide a type of financial sector risk assessments (focused on solvency).
- Important modeling issue is the level of aggregation of firms and financial sectors.
- Ongoing work at IMF on impact of shocks and stress scenarios using economy-wide balance sheet risk models (extensions of stress testing).
- Research on ways to link this with traditional macro models.
Look for Better Leading Indicators

- Broaden search to prices with information about variance, skewness, kurtosis and locations of non-linearities (tipping points).
- Keep abreast of new trades and what strategies/risks they are attempting to capture (e.g. incentive structures of participants).
- Back out risks from other aggregated data (e.g. credit risk indicators from CDOs).
Present Day

Balance sheets (1st moment)

\textcolor{red}{X} (we are here)

Prices (1st moment)

Risks (2nd, 3rd, 4th moments)

Models
What do we do when we know about risk?

- **Policy Issues**
 - When do financial sector risks go from natural/healthy to dangerous?
 - Who should be protected? And why?

- **Policy Tools**
 - Monetary and fiscal policy
 - Supervision/regulation (including accounting and transparency)
 - Competition policy