
CHAPTER II 

DIFFRACTION BY A DISK 

The problem of diffraction by a disk has a rigorous solution 

[24-26]; however, it is not suitable for numerical calculations in 

the quasi-optical region when the dimensions of the disk are large 

in comparison with the wavelength. The physical optics approach 

used in such cases sometimes gives erroneous results. In particular, 

the fringing field calculated in this approach does not satisfy the 

reciprocity principle. 

In this Chapter a refinement pf the physical optics approach is 

carried out. First , the diffraction of a plane electromagnetic wave 

by a disk wit h normal incidenc~ (§ 7-9) is investigated, i~nd then 

(§ 10-12) diffraction by a disk with oblique incidence of a plane 

electromagnetic wave is investigated. 

Normal Irradiation 

~ 

§ 1. The Physical Optics Approach 

Let an ideally conducting, infinitely thin disk of radius a 

(Figure 17) be irradiated by plane wave 
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E --H ..--H eilu } II - JC - 0.'1: t 

E:x=HII=O. (7 .01) 

The uniform part of t he cur ren t 

excited on the disk by wave (7.01) 

i s determined by Equation (3.01) 

and has the components 

o c H fv= -z;- u• 
.') /') 0 I = = . JC z . (7.02) 

Figure 17. Diffraction by a 
disk of a plane wave propagated 
along the z axis. 

Let us find the field created by 

this current. 

Since the diffraction field in the far zone ( R > > ka2 ) is of 

interest to us, the vector potential 
• 2tr 

A (X, y, z) = + J pdp J J (p, <JI) e/:r d' 
0 0 

may be simplified by using the relationship 

r = I J<: + P2 
- ~pR cos n ;.:::::; R - p cos 0, 

where n is the angle between p and R, and 

cos n =sin{} cos(·~......:.. cp). 

As a result, we obtain the simpler equation 

a 2a: 

'H s • A(x, y, z)=+ e~ p[.'p \ J(p, 't) e-i.tpcosg d·f· 
0 0 

Cont i nuing by using t he equa ti ons 

f 

H =rot A, rotH= -ikE, 

it is easy to s how t hat in the spherical coordinate syst em the 

fringing f ield components with R >> ka 2 equal 

(7.03) 

(7.04) 

(7.05) 

(7.06) 

(7 . 07) 



where 

E.=H,=lkA.. I 
E =-H .. =lkA , 

'f " ' 
ER =HR=O, . 

A, = A., cos f- A ;a: sin f• } 

A• :- (1ls cos f +A., sin f) cos &-A, sin 8. 

Substituting here the values 

. .. a ·· · • · eikR } 
A11 ::p -- Hos·-k . "11 (kasm&) -R ·' SID u. . . 

Ax=A,=O, · 

(7.08) 

(7.09) 

(7.10) 

which result from Equations (7.02) and (7.06), let us find the field 

radiated by the uniform part of the current in the form 

The function J 1 (ka sin a) is a first order Bessel function. 

using its asymptotic expression 

11 (!la sin fl) = f( k 
2
1 

•
1 

cos (ka sin & -
3
4n), 

· r.asn• 

(7.11) 

By 

(7.12) 

which is applicable when ka sin a>> 1, one is able to rewrite Equa

tions (7.11) in the following form: 

(7.13) 



result ions s t in t re on R ka\ ka sin I} 

the frin eld may be investi ed as the sum of the spherical 

waves from two "luminous" points on the rim of the disk, the polar 

an s of which respectively equal 1JI = ~ and lP = 1T + q, • It is not 

difficult to see that these waves satisfy the rmi principle. 

Actually, of all the points on the disk's surface, the point p =a, 

w = q, is the closest to the observation point(~&,~, and the point 

p = a, w = TT + ~ is the furthest from it. 

However, Equations (7.13) describe the radiation not only from 

the two "luminous" points, but they determine the field radiated by 

the entire 11 luminous" region which is adjacent to the line connecting 

the points p = a, • = ~ and p = a, • = TT + ~. 

Let us show that the luminous region actually makes the main 

contribution to the fringing field. For this purpose, let us cal

culate the field radiated by the currents which flow inside the 

sector encompassing the line • = ~ (Figure 18). Let us take the 

angular dimensions of the sector in such a way that its arc, which 

equals 2a~ 0 , would occupy the first Fresnel zone. When this is done, 

the angle ~ 0 will satisfy the equation 

' 

Figure 18. Calculation of the 
field radi ed by t "1uminousn 
re on of the sk. 

.A 
a(l-cos 4».) sin 0 ==< T. (7.14) 

In the case being investiga

ted by us, when the condition ka 

sin D>J is fulfilled, we have 

from Equation (7.14) 

A 4JX 
CQ$ <~>.= l - -4 . A:::::::: 1 - -2 t tZSIDv 

hence 

(7.15T 

(7.16) 



vector p e i 

sector is determin d by t 

of t c 

equation 
s i 

A _1 H e'liR {I d·'· s• -lkpsln & cos ·!Ia d~ 1 
II ::::::: - 2n •• . R J 'I' e r ... 

• --.. 0 

A. =A • .,.O. · 

in t i c ed 

(7.17) 

Taking into account the condition ka sin & >> t, one may show that the 

field created by the currents of this sector will equal 

Ea== H'f ..... H.,. v T-ks~nD cos& X I 
X sin T e1•R -lkasln & +t5'!. ( I ). ----e +O 

sm " R · V kasm 6 ' 

E ... =-Ha ...... HozJ/ a X 
T r.kstn 3 ' 

(7.18) 

cos., eiltR -lka sin &+i ~ ( I ) 
X san IJ R e 

5 + 0 r kastn u . 

Tqe amplitude of the expressions which have been found is approximate

ly -{2 times larger than the amplitude of the first terms in Equation 

(7.13). Moreover, expressions (7.18) and the corresponding terms 

in Equation (7.13) differ slightly in their phases: the first have 
~~ ,~ 

the factor e 5 , and the latter - the factor -e 4 The result obtained 
is similar to the well-known thesis in optics that the effect of a 

wave is equal to the effect of half of the first Fresnel zone (see, 

for example [27], p. 132). 

In the vicinity of the directions 0=0 and ft==n , when the 

azimuthal components lose their meaning, for the purpose of studying 

the fringing field it is more convenient to use the Cartesian 
components 

Ex =(E3 cos&+E R sin&) cos cr- E, sinf,l 

E,_ =(E3 cos 3 + E R sin 0) sin rp +E., cosrp.l 

Turning to Equations (7.11), we find that when&=Oand a· "S 

4 

(7.19) 

(7.20) 



Consequently, in t phy ic tics approach the sc tered 

in the directions tl =0 and 3 = 1r preserves t 

incident wave. 

polarization of the 

§ 8. ld From 

of the C 

Let us proceed to calculation of the field created by the non

uniform part of the current with normal irradiation of the disk. 

Since the latter is concentrated mainly in the vicinity of the disk's 

edge (p =a), the vector potential corresponding to it will equal, 

in accordance with Equation (7.06), 
a 2c A=: e;'. s dps jt(p, o/)e-Upslntcosc·~-'f)do/. 

(8.01) 
0 0 . 

The inner integral is calculated with ka sin & ~ 1 ·based on the 

stationary phase method (see, for example [21], p. 256), and Equation 

(8.01) is ~ransform~d to the form 

· 4 · Jf 2,; elltR i: 
A(x, g. z)=c- kaslnB R. e X 

x[I j'(p. ~.Je_;., •••• dp-i J J'(p. ~.J•"'''"'dp 1· (8.02) 

which allows one to interpret the fringing field as the field from 

a luminous line on the disk. This line is a diameter, the polar 

angle ~ of the points on which equals 

(8.03) 

Assuming the diameter of the disk is sufficiently large in com

parison with the wavelength (ka >> 1), one may approximately assume 

that the nonuniform part of the current near the disk's edge will be 

the same as on the corre half-plane (Figure 19). On the basie 

of § 4, the eld from t nonuniform part of t current flowing 

on 1 - 00~ ~a be res d t 



' 
(8.04) 

and similarly the field from the current flowing on the half-plane 
·- a<.g, <oo, may be represented in the form 

. t(~R+}l · 
E (2) = ikA (2) = E ·f' (2) e ellta sin t 
. x, x, -- · 0 xa y2r.llR . ' 

. • - · 1 (u+i-) 
H (2)=- ikA (2)cos&= He ·g'(2) e _ e114 •int 

x, Vt x, )' 2r.ltR 

(8.05) 

Here 

i ( u+•) 4 

A(l)=-1 ./2l'l e :r f J•( )e-/lrt,slntdTI 
c r kR.. 7J . ••• 

: -oo 

l f"& I (ltR+.!.) 11 

A (2) = + y iilf e . • s j' ( 7J) e;~ "'i sin t d1J, 
. -oo 

(8.06) 

and the functions f 1 and g1 are determined for the right half-space 

(O<&<y) by the equations 

re ions 

" . cos- +sln-
f'(l)=/(I)+sl~l)' {(1)=-. 2slnD 2 • 

f• (2)=/(2)- si~B ·• 
It • 

cos 2 --·sin 2 
/(2)= slat ; 

,, . a 
· It cos-r-slnT 

g1 (l)=g(l)+~~=B • g(l)=- slni 

8 . A 
• cos-2 + sin '"'K'" 

I (2) - (2) COS :iC 
II -II - sin t • g(2) = sin t • 

s (8.04) (8.06), follows that 

(8.07) 

(8.08) 



Figure 19. Diffraction by a disk. 
The half-plane L lies in the 
plane of the disk. The edge of 
the half-plane is tangent to the 
circumference of the disk at the 
point y1 = a, x1 = 0 (a is the 
radius of the disk). 

a s i!, (7J)e-l.t'lslnt d1J= 
---«) 

=-/!.- E,x ·flCl)e-l.tasrnt 
'J. .. R a 

and 

a s J!. { v) elk 'I sin. d7J = 
-co 

= _ }!_ E ·Is (2) e lka s!n t 
2li.R •x, 

4 

SJI ( }e-l.tT,slnfd = 
1/a "'l 1J 

-co 
= lc H . g' (1) e -utasrn t 

· 2r.k cos & 1x, ' 

4 J /~, (1) e'""• sin f d1J=. 
-co 

= lc H ·g'(2)etka!tlnt. _ 
2rck col & 0x, 

I 
(8.09) 

(8.10) 

In accordance with the assumption of equal currents on the disk and 

on the half-plane, one may consider the following equalities to be 

valid: 

(8.11) 

Therefore, the field from the nonuniform part of the current flowing 

on the disk will equal 

iaE. .. [ I ( kasln f !•) 
E~ =- H,. = J1'2r.Ra:in a r (2) e . . -

-i (.ta slri f- ~)] lkR 
-f'(l)e . ~. 

R 

iaH [ I (•a sin f !•) 
E, =H~ = · 0

"' g'(2)e · -
" y2r.;uJ sJn & 

(8.r2) 

-l (.ta sin f- ~) 
1 

lk/( 
-g•(t)e . eR , 

) 



For t rection&=O, we according to Equation (8.01) 

2• • 

a elkll sd 5 j• .\ =-·-. tf' . (;~, •j)dp, c R . 
. . IJ! 0. 

(8.14) 

' 
but in accordance with equalities (8.09) - (8.11) 

Consequently, 

I( (p, <f) dp= ::. H,.·cos <f,l 

f 1~. (p, o/) dp= ::. H,. sin 'fl. I 
(8.15) 

(8.16) 

that is, in the direction of the main fringe (0==~ the field from the 

nonuniform part of the current equals zero. 

By using the Bessel functions J 1 and J 2 for the field from the 

nonuniform part of the current, one may write the equations 

which with 

und. t 

laE.., . • 
E,=-H1 = T {ff1(2)-f' (l)J11 (kastn3)+· 

+ i cr (2) + r (1)] la (ka sin 3)} ~ltll. 
laHcn 

E•= H, =-r- {fg 1 (2)- g• (1~}11 (kasin&)+ 
(8.17) 

. +.i fg• (2) + g• (1)] 12 (ka sin&)} -;ll . 
sin & 1 change to Expressions ( 8.12), which were already 

recti on{}= 0, these equations give a field which 

( ) ro h e s 



they are interpo ed. Since t transition from Equations (8.12) 

to Equations (8.17) is no~ completely unique, in the angular interval 

O.<&!k! Equations (8.l't) may ve a certain error. This error is 

not very significant, since in this interval the field from the uni

form part of the current is large. 

§ 9. The Total Field Be a 
Disk with Normal Irradiation 

Turning to Equations (8.07), (8.08) and (8.17), let us represent 

the field from the nonuniform part of the current in the following 
form: 

. cos ' . ei11f E, = -H.=taHoxsln& 11 (kasm3)y-

_la~., {(/ (2)- f (1))11 (ka sin&)+ 

8 Jitlt 

+i(f(2) +f(l))J,(kasin&)}cos9y, 

. . sin' . eU 
E• ~ H,= ,aHos stu& cos&J. tkastn&)y- (9.01) 

·-:-'a~,. {fg (2)- g (l)jJ, (ka sin&)+ 
. 8 aR 

+tfg(2)+g(1)}11 (kasin.&)}sin9y-. 

Here the first terms, as is readily apparent, represent the field 

from the uniform part of the current taken with the opposite sign. 

As a result, the total field scattered by the disk (that is, the 

sum of the fields radiated by the uniform and nonuniform parts of the 

current) will be expressed only in terms of the functions f and g 

which determine in the rigcrous solution the cylindrical wave from 

the half-plane's edge 

E,=-H,=- 1a~,. COSf {(/(2)-, 

- {(l)J/1 (kasin &)+i U (2)+ · 
01AR + f (1)111 (kasio&)}y, 

E,=H,=- 112~·· siorp {[g(2)

g (l)J 11 (ka 3) i (g (2) + 
(9.02) 



Substitut here the explicit expressions for t functions 

f and g, we arrive at the final expressions for the fringing eld 

E __ H ___ iaH.,. l!...• (ktJ sin IJ) _ 
,- -- 2 3 slo-.. 2 

' • J a( Ita slo D) ] e111
R 

- t t ycos,,_ 
COST 

E _ H __ laH •• [ / 1 (Ita sin II) + 
~- ,- 2 I 

slaT 

(9.03) 

+ . J2(ka slo &) ] e"'R • 
t ,- TStn<p. 

COlT 
I 

These equations are valid in the right half-space ( 0~3< ~) . In the 

left half-space (; <;&<1e) , the fringing field is easily found by 

assuming that its electric field is an even function, and its magnetic 

field an odd function of the z coordinate: 

E,(z)=E,(- z), } 

Hlf (z) = ..:..- H, (-z). (9.04) 

Consequently, in the region z < 0 (that is, when ; < &..; .. ) 

E __ H _ _ laH,. [ / 1 (kaslo8) _ 
,- .- 2 I 

COST 

• / 1 (Ita sla 0) 1 e1
U 

-1 8 .yCOSf• 
slaT 

e.= H, = la~ .. f I, (Ita s~nll) + 
COlT 

1 (9.05) 

l 6 ySJnf. + . J,(ka sin B) J ,}ltR • 

sloT' 

Assuming that in Equations (9.03) and (9.05)3=0 and 3="K, respectively, 

we obtain 

(9.06) 

i 



ressions (9.03) and (9.05) e with t result d by 

Braunbek [29] for the sc ar fringing field in the far zone. It is 

alsJ interesting to compare these expressions with the precise numeri

cal results obtained by Belkina [34] by the separation of variables 

method in the spheroidal coordinate system. It turns out that even 

with ka = 5 a satisfactory agreement is observed between our approxi

mation method and the rigorous theory. In Figures 20 and 21, graphs 
of the functions v<•l(3) and v(l) (8). are presented which allow one to 

calculate the fringing field on the basis of the equations 

E H ikaa •P) eiltR. ) ,=- 1 =y-E.,·\· (8) Rcos<p, 

. ikaa r(!') oiltR. • J 
Ee= HT = rE·,~· \ (3)y sm<p. 

"-

(9.07) 

The continuous curve corresponds to the rigorous theory [34]. The 

dash-dot curve corresponds to the field from the uniform part of the 

current, and the dashed curve corresponds to the field calculated 

according to Equation (9.03) and (9.05). 

Oblique Irradiation 

§ 10. The Physical Optics Approach 

Let us investigate the general case when the plane wave 

falls on the disk at an arbitrary angle to its axis. Let us take 

the spherical coordinate system in such a way that the normal to the 

incident wave front, n, would lie in the half-plane <p= ; and form 

an angle y {o<y< ;) with the z axis (Figure 22). Adhering to the 

investigation procedure used in the previous sections, let us first

calculate the frin g field in the physical optics approach. 

The uniform p of the current excited on the disk by wave 

(10.01) is ermined by Equation (3.01) and has the components 

=- 0 ) 
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Figure 20. The function tt<'J(II) for a disk 
with a normal incidence of the wave. The 
various curves correspond to different 
approximations. 

The field radiated by it is found, as was done in § 7, by integrating 

(with the condition R >> ka 2). In the case of E-polarization of the 

incident wave (Eo..Luoz), this field equals 

}. (10.03) 
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Figure 21. The function v<',(ll) for a disk 
with normal incidence of a plane wave. 
The various curves correspond to different 
approximations. -

and in the case of H-polarization (H,J_goz) 

J (~a J(i•+ ... IJ eilcR I E =H =-iaH cos&sinf • -
• , ox ~ R ' 

... ,-- Ill/( 
E H . H 11 (ka r }.'+1'-IJ e J , =- 1 = - ta o.z cos f ... r -R • , 1-'+f&' 

(10.04) 

The quantities A and ~ in Equations (10.03) and (10.04) are deter
mined in the fo llowing way: 

FTD-HC-23-259-71 

A.= sin 3 cos f, l 
,... =sin 3 sin' - sin r' 
. .fl.* +,...I ;;;:. 0. 

56 

(10.05) 



Assuming cp=- rc and&:::::: rc- Y (; < 8 <If), in the resulting expressions, 

let us find the field scattered by the disk in the direction towarc 

its source. With E-polarization of the incident wave, it equals 

(10.06) 

and with H-polarization 

(10.07) 

Using the asymptotic expressions for the Bessel functions, one 
is able to show that when R >> ka2 and kav'l1 +p.• > 1 the fringing field 

is radiated from a luminous region on the disk. In the case when 

Y'l'+p.•~o, the luminous region is increased and in the limit (when 

;1. = 1.1 = 0) the entire surface of the disk starts to "shine". 

§ 11., The Field Radiated by the 

Nonuniform Part of the Current 

Let us calculate the field in the nonunifor:u part of the current 

Its corresponding vector potential 

by means of the stationary phase method is transformed with 
ka v' 11 + P.

2 > 1 to the form 

A=..!."' / . el; [J4 J (p, ·?.J e-ikp v:v,,.,dp-
c V ka V ': + ;.~o2 

0 

Sa v- J ·•Ji _ i J (p. •!:.) elltp i.y..,.• dp e' • 

u 

(11.01) 

(11.02) 

(11.03) 



Figure 22. ·The oblique inci
dence of a plane wave on a disk. 
n is the normal to the incident 
wave front. 

by the luminous region adjacent to 

the stationary phase points $1 , $ 2 
lu~inous line on the disk surface. 

(11. 04) 

a re the s t a tionary phase points 

and the quantity o is determined 

by the equalities 

sin3=--~
Vl1 + ~'' ' (11.05) 

From Equation (11.03) it 

follows that with R >> ka 2 and 

kayi'A.:a+~2 ~ 1 the main contribution 

to the fringing field is given 

the line $ = $1 , $ = $2 . Thus, 

physically correspond to the 

In order to calculate the vector potential (11.03), it is 

necessary for us to first express the nonuniform part of the current 

on the half-plane in terms of its field in the far zone. For this 

purpose, let us introduce the auxiliary coordinate systems x1 , y1 
and x2 , y2 (see Figure 23), and let us take the following designations: 

a1 , a1 Ca 2 , s2 ) are the angles between the normal to the incident 

wave front and the coordinate axes x1 , y1 Cx2 , y2 ); 

0 0 0 
4> 1 . .- 1 = -4> 2 ) is the angle between the z axis and the projection 

of the indicated normal on the plane x1 = 0; 

q, 1 Cq,1 = -4> 2 ) is the angle between the z axis and the direction 

from the coordinate origin to the point p(y1 , z) which lies in the 

plane x1 = 0 and is the projection of the observation point P( x, ' 7 , z) ; 

r 1 i s the distanc e f r om the origin to the point p(y1 , z). 

The quantities introduced here are determi ned by t he equations: 
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cos 111 -sin y cos·~,, cos~~= sin y sin 'ta• 
ll:a = 11: - ~.' ~:t = 1: - ~ .. 

• () C>S ~.. • r1 COSy 

Sln '• = ;lin «t • cos '• =sin,., • 

• sin II c1s (h - t) smcp1 =·-· , Yl sln2 fl sin' (9;=
1 

=_=,::=) 
cosO 

C0Sy1 = ·- · · , y I - sin' 0 sm1 (.Z,1 - c;) 

(11.06) 

0 0 
fa=-cp,, f2=-fa • 

r,=RV1-sin•&sin1 (91 -f). 

Furthermore, let us write the expressions for the field from the 
nonuniform part of the current excited by wave (10.01) on an ideally 

conducting half-plane - oo<y, <a. 
the form 

In accordance with § 5, they have 

where 

0 • 0 ,.- '• ,. + ,. 
sin 2 +cos 2 r (fs· f~ )=--~o=----

sin fJ -sin f• 

,.- ,f ,. + ,f 
o -sin 2 +eo• 2 

'· ) -:- ----=----sin ,f- sin f• 

(-; <,,<~)· 

I) 
COSfl 
0 t 

sin fJ - sin f• 

cos,. I 
SID 'lf - SID fa ' J 

(11.07) 

(11.08) 

(11.09) 

On the other hand, this field may be expressed in terms of 
the vector potential 

(11.10) 



By means of equati on 

(11.11) 

which follow s from Equation (3.10), if one substitutes z = t, w = ~ ' 

d = -ip, k = -1 D, in it we find that 
< • 

A= ~" e'h.c:ou. J J(1J)H~'lk l zll+(g,-7J)*Jeik1)eo~"dl- (11.12) 
-ao 

Figure 23. Diffraction by a disk 
with oblique incidence of a plane 
wave. The half-plane L lies in 
the plane of the disk. Its edge 
is tangent to the circumference 
of the disk at the point x

1 
= 0, 

y = a (a is the radius of the 1 
disk). 

the function ~l takes the value 

Taking the fact into account that 

the nonuniform part of the current 

is concentrated mainly in the 

vicinity of the half-plane edge 

and using the asymptotic repre

sentation of the Hankel function, 

we obtain 

where ct»1 =cos~.-- sin~~ sin cp1 = 

=sin ·( sin~~- sin 3 cos ('f1 --l'J 

(11.14) 

In the case when ~l = o [see 

Equations (11.04) and (11.05)]-

(11.15) 

Start ing from expression (11 . 13), i t is not difficult to show 

that the fringing fi eld in the far zone i s described by the fo llowing 

equations : 



E =-iksina.1 cosa.1 sintp1A11 +iksin
1 CltA~, }. 

Jl:t I •I 

H = -lk s:in "'cos cp,A11 , • 
Xa I 

(11.16) 

where 

(11.17) 

• I (''' )·-~ J J (-t~) e--t•'IY'ie.r ""'d 
II• Tl ' • 1/a ·• 11• 

-oo 

• 
I.e, (tl's)= J Jz, (1)e-t•~V>.•+':"d1J. 

(11.18) 

--
Then by equating expressions (11.07) ·and (11.16), we find. the desired 
connection between the nonuniform part of the current on the half
plane -oo<g,<a and its field in the fa.r zone 

1 {·':) __ _!._ Hox, 11 o) -u4 Y>.'-fo""' 
1/a Tt- lk2:: sin111cos,1 .g ''''fa e • 

fz, (~J= ik~:: sio!a,.(Eo.r/1 (fa• f~ )-

-cos a., tg '·" o.r,e' (f., '~ )] e-litJY'>.•+ .... 
(11.19) 

One may show in a completely similar way that the nonuniform 

part of the current excited by wave (10.01) on the half-plane 

-oo~u~ <a creates, in the far zone, the fringing field 

where 

E.'C. =- i k sin~. cos~. sin tp1A11, + ik sin2 
ct1Ax,' } 

H x, =·- i k sin~. cos cp1 A11
,. 

(11.20) 

(11.21) 



(11.22) 

On the other hand, in accordance with § 5 this field equals 

(11.23) 

Here 

k1 (sin l':a- sin rp:) =- VA-2 +p.2
, (11.24) 

and the functions f' (?., rp~) and g• (rp., <;>~} are determined by the equations: 

?a - '11 . 'i• + ff 
sin 2 -cos 2 cos f~ 

I' (rp., rp: ) = 0 + 0 ' 
sin rr 1 -_sin f• sin '' - sin fa 

I} . + 0 
fa- 'PI 'Ia fl 

sin 2 +cos 2 t ( . 0 ) + cos ,,_ 
g '1a• <?2 =- l 0 i sin , 0

1 
-.sin f• s n ft -s Rf~ 

(11.25) 

I 3n: . · . fa) 
\ -yc;cp,<y • 

Equating the quantities (11.20) and (11.23), we find 

. c el•aY'i.•+ ~ t o 
I v. (ta)=- ik2:: sin cz1 cos 'h Hox.g (fa• ~2 ), 

· c e1taY">.~+... o 
1x.(~a) = ik21C smZcz~ fEoxJ' (rp,, fz)-

(11.26) 

··-COS 2 1 tg f 1H ox.i• (fu 'P: )J. 

In this way we established the relationship between the nonuniform 

part of the current on the half-plane and its field in the far zone. 
Now let us return to a calculation of the field from the nonuniform 

of on t 



Since the disk is assumed to be large in comparison with the 

wavelength, the nonuniform part of the current in the vicinity of its 

edge may be approximately considered the same as on a corresponding 

half-plane. Consequently, the integrals in Equation (11.03) will 
approximately equal the corresponding integrals from the current on 

the half-plane: 

f Jx, (p, o/l) e-ikp t">.•+J'o'dp= lx. (1'.), 
0 

j Jv. (p, 9.) e-ikp Yv+ ~"dp = lu, (·;.), 
C) 

j Jx, (p, 9,) e:~~ r- Yv +I" dp =lx, (9,), 
0 

j Jv. (p, <l'a) eik~Y>.• + ~'-'dp = I u. (cfl.). 
0 

(11.27) 

} 

As a result, the vector components of (11.03) may be represented 

the following form: 

in 

' I '1 I 2::a eitR l T . . l 
Av. = c y k Jf ).1 + ,.... R e (/ Va ('~.) + i/ lit (·~J], . 

J 
1 y 2r:a elltR i;.. . . 

Ax.= ·-c . k y).• + .... R e [/ .... (·~.} + tl Xa (<ft,)J. 

(11.28) 

Then substituting these values into the equations 

E'i = ikA, =ik {A11• sin{·~, -f)- 4.r. cos(~1 - cp)J, } 

E• =ikA1 =ik [A11,cos(<fl1 -cp) + A ... ,sin (·~.- cp)J cos&, 
(11.29) 

we find the field from the nonuniform part of the current flowing 

on the disk 

(11.30) 



The resulting expressions are valid when ka()*+p.• >1. 

may be slightly simplified to 

X{- H cos 3 sin(+, -f) [g'(m m')e-lkaY'l.t:j:j;i_ ox, stn• 111 . Tl• Tf 

- igi (cp r.p') eikaY'V+Io" I- 1!. . cos c+.- f) X 
a• 2 ox, sin1~ 

X_ffl (cp1, tp~ ~ .e-lkaY"A'+~1 _if' (cp2 , tp;) ~ikaY'l.t+J.&')}' 
,.!!. 

ae .t e'"R 
E1 -H =- -rX 

- l 2r.ka Jl A*+ .-.• 

X{- H cos(+,- f)fg' (f ,·) e-ItaYl•+)III-
Ox, Sll1la1 1• I 

-- . ·c 'l) ikaY"~I I E cos & sin(~.- f))< tg fa• '¥2 e T u.r. s.n• 111 

X {f' (r.p,, ,: ) e-111a Y'l.' +~'<'-I [I (fa• cr:> eikal 1'+~'<'] } , 

if we use the identities 

sin(+1 -?) 'cos(·h-'P>cosa tgcp_cosDsin(9.-t) j 
sin a 1 cos fa stn1 111 • 1 1 sm1 a1 ' 

cos (h- 'I')+ sin (4t1 - ?) - tg = cos (·h- f) 
sin a1 cos fa sin* a1 COS lla fs- sin2 a1 cos It • 

(11.31) 

They 

(11.32) 

(11.33) 

The operations carried out above may be briefly summarized in 

the following way. The field from the nonuniform part of the current 
on the disk 

is und ( h re c culation of the current) in rms of t 



by a rep of 

0 • J J (p, !() e"~P• dp by l J ( 1J) eil".•·d1 

in those cases when ~ = ~ 1 . The functions ~ and ~l are determined 

by the equations 

tl> =sin lSin tJt -sin &ccrJ{rf' -f), . } 

4.» =sin y sin~- sin 3 cos (rf'-f)'" / 1- sin' Y cos•.Z, 
1 

. • Y 1-sin20sio'(t-rr 
(11.3~) 

Solution (11. 32) was determined exactly in this way with katfl'+p.•> 1, 

when, for auxiliary half-plane whose edge touches the rim of the 

disk at the points $ = o, $ = ff + o, the phase ~l was equal to ~. 

A solution to the problem using this methc1 also is possible 

in the case 

when ~l = ~ = 0. The direction 3 = "(. <p = ; corresponds to the princi
pal maximum of the scattering diagram, and therefore is of special 

interest. Substituting the relationships 

I (11.36) 

I 

which follow in this case from (11.19) into the equations 

2• 

(11.37) 

a eiM f I +I . ) d"• . A =--- ·( 11 cost ¥ smt T• 
X c R • I AI 

ll 

2w 

=-··~ ~ eiltR J (.Ill•. "' I ''') d•'• :--- "' T - z1 COS T Tt 

0 



we find the field radiated by the nonuniform part of the current in 

the direction of t principal maximum. With the E-polarization of 

the incident wave (E0...Lyoz), it equals 

E H E a ( I + cos• y )eitR } 
s: = & = u rc sin' y 2K cos y - cos, E R' 

£ 1 =Hs:=0, 
(11.38) 

and with the H-polarizat ion (Ho...Luoz) of the incident wave, it equals 

£ 6 = --Hs:=-E01 
4
1 , X 1 rc s n T 

X (2K cos y - 1 + cos' T e)eiU 
COST R • . J . 

E:c=H.=O, 

(11.39) 

where 
• • 

2 T K=S d+ • 
· Yt-sin1 1sin'+ 

0 

E = J /"1- sin1 ysin''}l dt}l 
0 

(11.40) 

which are complete elliptic integrals. From the resulting expressions, 
' . 

it follows that with the rotation of the incident wave polarization by 

90° the phase of the field from the nonuniform part of the current 

is changed by 180°, as it was in the case of a half-plane. If y ~ O, 

then the di~ference between the polarizations disappears, and in the 

limit (when y = 0) we arrive at the previous result (8.16). 

Numerical calculations were carried out using Equations (11.38) 

and (11.39). They showed that for values of y not exceeding 55° the 

field from the uniform part of the current is at a minimum ka time~ 

larger than the field from the nonuniform part of the current. 

§ 12. The Scattering Characteristics with 

an Arbitrary Irradiation 

The total field scattered by the disk equals the sum of the fields 

radi ed by the uniform and nonuniform parts of the current. However, 
rast t t ase of irradi ion, in re on 

e f 

i 



detail the frin ld 

the expressions (11.32) t 

11. 

the incident plane ( x=O, 

t form 

l *4 lltR 

.,,_~e Eo:c[-f'(l)e- ilwl' +il'(2)eika"'JeR 
2~k4?-

wi~h t= ; , &>y, 

11. 

I i'" . JIIR 

E., =-H,.· ae Eo:c(-f' (2) ei.tal' + ifl (J)e-ikai'J.!:......: J 
T .... v 2RkaJ?-I . R r 

with <p= ; , &<y • 

• 1T . ~R 
E =-H - a' E (ft (2) etta..,-- if' (1) e--illa"J.!_ 
- 'f & l2r.kal?-l o:c . R 

• with <p=-T; 

• 1T IIIR 
E H ae Ho:r[-a' (2) el.tal' + ig' (l) e-lktn•J.!__ 

& = ' Jt 2r.ka II") 0 
. R 

• wi~h rp=T· &<y, 

• 'T ~ 
E H ae Hox[g' (2) eilta" _ ig' (l) e-lkal'j.!;.: • = 9 y2~ka 1?-1 R 

• with <p=-T·. 

±~"-) where 

(12.01) 

(12.02) 

The functions f 1 (1) and g1 (1) correspond to the field of the auxiliary 

half-plane -<X<.y<a, and the functions f 1 (2) and g1 (2) correspond 

to the .field of t h f-plane -a~y<oo. In accordance with 

Equations (11.09) and (11.25), they are determined by the expressions 

&-y O+t 
sin -r +co•-r 

11 (1)-/ (1) _ COif f(J) 
- sin T ~ sin 3 • = sin y - sin I 

1 -T 8 +1 sfn-2-+cos 2 
) 



8-y &+T 
sin - 2- -cos..,-

f' (2) = f (2) + sin y c~ :in 6 ' f (2) = sin y- sin 8 

t-y t+r 
. 

8 
sin ..,-- +cos.,-

g• (2) = g (2)+ sin y c~ sin B 'g(2)=- sin y- sin I ' 

(12.03) 

ft 

if f=2 and &< ; ; and 

. 3 +T 8-y l 
san - 2- -cos --""2 

I COST I (1)-f ( 1) = f (}) - SlD y + SiD 6 ' . -- su1 y +sin It 

&+t B-y 
sin --+cos--2 2 

s1n T +sin 8 

B+y 8-1 
sin - 2 - +cos -r 

f' (2)= f(2)+ sin;~~inD • f(2)= \ smy +sinO ' 

(12.04) 

&+y &-y 
sin - 2- -cos -r 

g(2)= stny+sint 1 cos& 
g (2) = g(2) + siny +sin[; ' 

if f = ·- ; and & < ; . . . 

It was mentioned above that when ka >> 1 in the directiDn 
&-y (O'><y~~5"), ~= ; the field from the nonuniform part of the current 

is negligibly small in comparison with the field from the uniform 

part. Therefore, for the field from the nonuniform part of the 

current one may write, with the help of Bessel functions, the 

following interpolation formulas: with f==; 

• and with '=-y 

E, =-H1 == ia;•• {(i' (IJ- ji(2)J J,(C)-

. eilR 
- i l(' (1) + i' (2}]11 (C)}y, 

£ 1 == H, = ia: .. {fgi(l)-g' (2)]11 (C)

ltlf 
.,. - i[g•(l)+g'(2))J,~)} eR , 

1 

(12.05) 

J 

(12.06) 

on ) . 



where 

E, = H' = la~ .. {[gt (1)- g• (2))j, \;)+ 

lltR + i[S' (1)+ g 1(2)] 11 {t)} e R • 

~ = fla (sin & -sin y), } 
e = ka (sin 3 +sin y). 

(12.06) 

(12.07) 

These expressions are valid in the region 0<:&< ; ; when Cl> 1 and 1e1 > 1 

they change to Equations (12.01) and (12.02), and in the direction 

&=y, f= ; they give a field equal to zero. 

Using specific expressions for the functions f 1 and g1 , it is 

not difficult to establish that the total field scattered by the 

disk in view of Equations (10.03) and (10.04) may be represented in 
the following form: 

and with 

It 

• f=---2 

E, = -- H, = la;~u < 1)-f (2)J 1. (C)-
1 

·'·It - ;u ct>+ f(2>JI, <t>lr, 

£ 1 = H,='a~··{fg(t)-g(2)Vs (t)-. 
. ,Pit 

- i(g(t)+g(2)]1,(C)}y, 

E, =-H1 = /a:••{[/(1)- f (2)]11 {a)+ I 
lkll + i u ct > -1- tl2>J 1, <t>> r . 

~H J 
E1 =H~=' 2 '•{fg(J)-g(2)Jl,f;)+ J 

elk!t + ;fg(t)+gC2)JJ. (e)}: r· 

convenient to write as follows 

=-

(12.08) 

(12.09) 



-where the functions z: and E are determined in the region 0<3<-f- by 

the equations: 

d-y h+t ' 2' 
£"(&, ·o }=- J.(:) :t:::l J,(q with =..!!.. 
E(&, y) . sin - 2 - cos-,.-

!(&, Y) }= J.<~> ; J,(e) it ---=-o+y tt- 1 w hf- 2 • 
!(3, j) sin - 2- cos--y-

(12.11) 

and in the region ; <3<• 

~(3 .,) }-- Is(:) · +t l:(;) with m- •. 
... t I - -+- II + ~- ' T --r· 
I(&, y) cos~ aln9 . 

~(&, i) }=± ~~~T -i 1'~~ with f=-j. 
t(&, y) cos-2- sin .!.:f:l 

(12.12) 

I 

Here assuming y = O, we obtain the previous relationships (9.03) and 

(9.05). 

In the directions &=y and &=::-·{ (with,.=;), where the 

scattering diagram has a principal maximum, it follows from Equations 

(12.11) and (12.12) that 

~y) =~(Y)= _: kacosy (12.13) 

and 

!(-r--y)= -~(t: -- Y)= -·kacosy. (12.14) 

In the direction toward the source(&=-r--y. f=;_ ;), the functions 

~(&) and 1:(3) take the values 

I:(&) I - 1 ' 
t(&) . = :± iiiiT'• {;) -/J, (t). (12.15) 

considering &:::~, we obtain 

) 



which corresponds to the physic optics approach [Equation (7.20)]. 

-The functions r and r allow one to calculate 

(12.17) 

which are the effective. scattering surfaces with the E- and H-polar

izations of the incident wave. Let us recall that, by definition, 

the effective scattering surface is a quantity eqtlal to 

_ lSI. 
o- 4~1s.1• (12.18) 

where 

(12.19) 

which is the energy flux density averaged over one oscillation cycle 

(the Poynting vector) in the scattered wave, and s0 is a similar 
quantity for the incident wave. 

In this way, we obtained the expressions for the fringing field 
which approximately take into account the nonuniform part of the 

current. In the incident plane (f=::t:.;) , they have a form which is 
rather simple and convenient for calculations. It is also interesting 

that in this case they satisfy the reciprocity principle as distinct 

from expressions (10.03) and (10.04) which correspond to the uniform 

part of the current. It is not difficult to prove this by verifying 

that Equations (12.11) are not changed with the simultaneous replace

ment of y by D and of & by y, and Equations (12.12) are not changed 

with the replacement of 3 by 1r - y and of y by ~-& [in the case 

f=-; ] . 

However 1 Equations (12.11) and (12.12) lead to a discontinuity 

of magnetic eld tangential component Hf on the plane z = 0 in 

k case of tion a st 



reason for this i t we did not consider the interaction of the 

edges. It is also necess to take into account this interaction 

in the case of glancing incidence of the plane wave ( Y = T )• when 

the fringing field components E• and H~ must be equal to zero. 

Let us point out once again in conclusion to this section that 

expressions (12.11) and (12.12) near directions 3=y, &·= •-T (with 
• 'i'=T) have an interpolation character, but in return they allow . 

one to represent the fringing field in the incident plane x = 0 in 
a convenient (uniform) form which frequently is of greatest importance 

(compare § 24). 



CHAPTER III 

DIFFRACTION 8Y A FINITE LENGTH CYLINDER 

The distinctive feature of this problem is that, in addition 

to the nonuniform part of the current on the cylinder's surface 
which is caused by the discontinuity, there also exists a nonuniform 

part of the current arising as a consequence of the smooth curve of 

the surface. This part of the current has the character of waves 

travelling over the cylindrical surface along geodesic lines [36] -
that is, along spirals on the cylinder. These waves, which as they 

move strike the edge of the cylinder, undergo diffraction and 
excite secondary surface currents. In turn, the nonuniform part of 

the current resulting from the discontinuity undergoes diffraction 

while being propagated over the cylindrical surface. It is clear 

that specific consideration of all these effects is a very complicated 

problem. 

However, if all the linear dimensions of the cylinder are 

sufficiently large in comparison with the wavelength, these effects 

may be neglected when calculating the fringing field in many cases 

which are of practical interest. In particular, they may be neglected 

when calculating the field scattered in the direction toward the 
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source [5, 37]. In this case it is suffic nt to consider only the 

nonuniform part of the current which is caused by the discontinuity 

of the surface, and we will do this in this Chapter. The equations 

obtained in this way are generalized to the case when the observation 

direction does not coincide with the direction of the source. 

§ 13. The Ph~sical Optics Approach 

Let us investigate the diffraction of plane electromagnetic wave 

(13.01) 

on a finite, ideally conducting cylinder of radius a and length Z. Let 

us position the spherical coordinate system in such a way that its 

origin is at the center of the cylinder, and the normal n to the 
ft incident wave front lies in the half-plane f= -2 and forms an angle 

T (oc;;-r<-i-) with the z axis (Figure 2J~). 

An incident wave having an 

arbitrary linear polarizaton always 

may be represented as the sum of 

two waves with mutually perpen

dicular polarizations. Therefore, 

for a complete solution of the 
problem, it is sufficient to in

Figure 24. Diffraction of a plane vestigate two particular cases of 
wave by a finite cylinder. n is 
the normal to the incident wave incident wave polarization: 
front. 

(1) E-polarization, when the incident wave electric vector is

perpendicular to the plane (fo}_yoz)and 

( 2) H-polarizat ion, when Hoj_goz • 

of t XC on t sur-



A t: E. • • "' fi .• /_ =- -2 u•StnystnTe , • • 
(13.02) 

and with the H-po1arization it has the components 

·0 ·0 0 , =J = , I • • 
l.o = - .!__ H sin a e;"• J. 

& 2n: O.X T t 

(13.03) 

where 

•l>= asinysin?+Crosy. (13.0~) 

Let us calculate the field created by these currents in the region 
" f=-T. 

The vector potential of the fringing field is determined by 

the equations 

(13.05) 

and 
I • 

0 A=: s d9 
-· 

2 ' 

S 
elltr 

j•(C, ~),-dC with y>O, 
I . 

2 

(13.06) 

where 

r =v'~'+(!I-1J)'+(z ~C)' . (13.07) 

Since the field in the far zone (R).. ko.•,:R > kl') is of interest to us, 

these expressions may be simplified by using the relationship 

3 tcos 3 



As a result, we obtain a simp r equation 

(13.09) 

Since the current components are described by the functions 
/(i') e1

,..: , then the problem of finding the field reduces essent:lally 

to a calculation of integrals of the type 
I 

The integral 
I 

2 0 s e~lt~ (cos 1- cos IH dC 5 f (i') eip sin 4t dt = 
I -• 

ltl = 1 (e':r (cos 1-co•IJ-;-

ilt(cos y- cos&) 

kl 0 
- i f" (cos 1-cvs I) J s . I 4t - e l (·~) e'P:t" d~. 

-· 
0 . J i(·r)e1''"1 <11J~. p=ka(sin'(+sin3J 

-· 

(13.10) 

(13.11) 

when p >> 1 is easily calculated by the stationary phase method. The 

stationary phase point is determined ·from the condition 
4
! sin9=0 

and equals 

(13.12) 

ft Then assuming ~=-,-+o, we find 

• 
o r , ~ J /(·~)e''llltt.)d~zf(t,)e-'' J e 'r dl~ - . -r (13.13) 

a we sions 



with 0 zation 

(13.14) 

and with H-polarization 

(13.15) 

where 
~ ~ . 

i 2 (COS f-<:0:5 &) -i 2 (COl T-COI &) 

l=e -e 
--~i;-;-k7:(c-=-os-:-.1-:---c-os--:;6:':"") ---X 

V 2:: -ika (sin y+sln &) +I r 
X ka.(slny + sla i) e · 

(13.16) 

The fringing field in the region cp=--T is determined by the 
relationships 

E9 =-H.=ikAx, l 
E• = H'f =- ikA,sin &. 

Therefore, with the E-polarization it equals 

ika . . e1lll l 
E~ =- H& = 2i;' Eu. Stn 'fy·l, 

E•=H =0, J ' . 

and with H-polarization 
ika . ellt.R ' 

E•=H, =- .2r. Hoz·sm3 r·l, J 
E =H.=O. ' . . 

(13.17) 

(13.18) 

(13.19) 

The resulting equations show that the field scattered by the cylin

drical surface is created mainly by a luminous band adjacent to the 

cylinder's generatrix with tl'=?.=- ; . The radiation from this 
band may be represented [see Equation (13.16)] in the form of spheri

cal waves diverging from its ends (points 2 and 3 in Figure 24). 

us te re sions (13 18) (13 19) a form 



(13.20) 

Here 

-::\t • 
~. =Gsiny, ~ =-Gsin&, 
-u. ~ll (13.21) 

and 

;; = 2 Y 1lka(sln"(+slo. &) X 

sln [~(cos 1 -cos 0)] -ika (sin T +sin &)+If: 

X cos T - cos & e 

(13.22) 

--· . The index "O" on Y and ~ means that the field was calculated in 
-u ~u 

the physical optics approach (based on the uniform part of the 

current), and the index "c" shows that this fringing field is created 

by a cylindrical surface. The effective scattering area, in accord

ance with (12 .17), i~ determined for a cylindrical surface by the 
relationships 

1
-•t• CJ:. e = r..a• Lll = 'Ira• sin • T IG I'' } 

CJ• = 'ltQ.•I \-, 1•- 1ra* sin' & I G I' 
''· H l~u - · 

(13.23) 

In the direction of the mirror-reflected ray (&=y), we have 

• • kal' . ll 2na l' . Jl 
CJ11• a= CJil. H = Stn v = T SID v. (13.24) 

-· In the direction toward the source (&='1'!-·Y) , the functions .l:c 

d ~·c an ~ equal 
11 

\1' =- {" 0 =JfsJnit.sin(ltlcosll) -e-'lJifasinl+'r;. 
1:.J u. £.1 q, :rr.ka cos IJ 

(13.25) 

These expressions are valid if ka sin B>l. . It is not difficult 

o see, means of ions (13.02) - (13.05), that the fringing 

if y = 'B=n t case of (t 



, in ~he rection toward t ource) we find an expression for 

the fringing field in the region ka sin 6 1 and in t direction 

6=~ . Naturally the desire arises to write interpolation equations 

that is, equations which would provide a continuous transition from 

the region ka sin & > 1 to the direction tJ=x. : Now let. us note that 
the field scattered by a cyliGder is comprised of the fields scattered 

by the lateral (cylindrical) surface and the base (end) of the 

cylinder. In the physical optics approach, the field scattered by 

the end of the cylinder is equivalent to the field scattered by a 

disk. But the field scattered by a disk is described by Bessel 

functions. Therefore, it is also advisable to express the field 

scattered by the cylindrical surface in terms of Bessel functions. 

As s result, the desired interpolation equations for the field 

scattered by the cylindrical surface may be represented in the form 
• 

(13.26) 

t=2kasin&. 

-o o 
From this it follows thatL:

4 
=I:a = 0 in the direction &=t:., and with 

the conditions ka sin&~ 1 we obtain Equations (13. 25). 

The field being scattered by the cylinder's end (by the disk), 

in accordance with equalities (10.06) and (10.07), is described in 
the physical optics approach by the equations 

}:: } _ -~.l (C) l~lcoaf. 
~.' - -+- slo it 1 e 
~~ . 

(13.27) 

Consequently, the field scattered by the entire surface of the .. cylinder will be determined in the plane tp=- 2 by the equations: 

(13.28) 

re 



-. E (&) 

E'c&> 
} = 2'~~: nle'" ,., •- e·••• '"' 1) [J, (t) - il, (CJI::,: 

cost J (') e'lttcoat (C =c 2ka sin&). 
sin 6 1 .. 

These equations allow one to determine in the physical optics 

approach the effective scattering area of a finite cylinder. 

§ 14. The Field Created by the Nonuniform 
Part of the Current 

(13.29) 

Let us find the field from the nonuniform part of the current 

caused by the surface's discontinuity. Figuratively speaking, the 
field scattered by the cylinder is created by the "luminous" regions 

on its end and lateral surface. Mathematically this field is 
described by the sum of spherical waves from the "luminous" points 1, 

2 and 3 (see Figure 2~). Obviously the field from the nonuniform 
part of the current also will have the form of spherical waves diverg

ing from these same points. 

In the case when the length and diameter of the cylinder are 

sufficiently large in comparison with the wavelength, one may 

approximately consider that the nonuniform part of the current near 
the discontinuity is the same as that on a corresponding wedge. The 

field radiated by this part of the current in principle may be found 
in the same way as in the case of the disk. However, such a method 

is rather complicated. We will find the desired field by a simpler 

and more graphic method, starting from a physical analysis of the 

solution obtained for the disk. 

For this purpose, let us investigate the structure of waves 

(12.01) and (12.02) whi are radiated by the disk. These equations 

t factor 



Here Jf; is the unfolding coefficient of the wave. It shows how 
the field is formed with increasing distance from the disk: the 
diffracted wave which is cylindrical near the disk unfolds into a 

spherical wave as the distance from it increases. The coefficient 
(sin i +sin &)-''• is proportional to the width of the luminous region on 

the disk or, in other words, to the width of the first Fresnel zone. 

Thus, in Equations (12.01) and (12.12) the functions f 1 and g1 depend 

only on the body's geometry --more precisely, on the character of 
the discontinuity. 

Therefore, it is entirely natural to assume that the similar 
waves which are being scattered by a cylinder have the same structure 

and differ only in the functions f 1 and g1 which correspond in this 
case to a rectangular wedge. Consequently, in the direction toward 
the source, the field from a nonuniform part of the current flowing 

on the cylinder may be represented when ka sin ~>I in the following 
way: 

(14.02) 

In accordance with § 4, the functions f 1 and g1 are determined by 
the equations 

} 

• 
fl (1) } = ala n ( I .::;:: 

g'(l) n cos~-1 . n 

K · tt- 2& - 2sta1 ' 
I )...,._'cost 

rosn--cos-;;-

• ala-n 

(14.03) 

on p . ) 



where 

cost ala I 
2tln I 2cosl ' 

• 
/' (3) l- Jloli ( I -

l - ,. • -+--
' (3)1 cos-- J ,. 

_ I ) -+- sin It 
+ n n + 28 - 2cot It • 

COl n - C'OI --;;-

3 n=,-. 

I 

(14.03) 

(14.04) 

In Chapter IV, we will show [see Equation (17.25)] that in the 

direction &= .. -T=• one may neglect the field from the nonuniform 
part of the current flowing on the cylinder in comparison with the 

field from the uniform part, if ka> 1. Therefore, for the field 
from the nonuniform part of the current, one may write with the help 
of Bessel ~unctions'the following interpolation equations: 

Here r (&)=I M I J, (C)+ iN' J, (C)J e/111 (01.

- {' (3) (/1 (C)- il1 (C)] e-~1"011 1
, 

L' (&) =·f.M'J• (C) +IN'J• (C)] eiltlcoa I

- g• (3) [J, (t)- il2 (C)] e - 1
"
1
'

011 
• , 

and the functions JMI, ~and M1 , N1 respectively equal 
I 

.~'} = I' (I) c;:: {' (2), ;• J = g' (I) ::;::: g'. (2), 

or 

(14.05) 

(14.06) 

(14.07) 



• 
jiji } sin-; ( _ 1 -+-
M' === --;- -+- -.---.-_--:::2-:::-1 -

cos--cos-. n n 

1 ) -+- COli"-+- lfD It 
± 11: 2b - sfa & - 2cos I • 

COl ft - COl A · 

'• N'} = sla II ( 2 -

N• n • -+-
COI~~-1 

(14.08) 

I 
•.:t= r.: 11-21 :;.: 

COl n- COl ---;;-- • 

I ) - llat 
a 2& -+- 2co1 I • 

"o' 11 -cos 11 

The resulting Equations (14.05) change when ka sin&> 1 into Equations 

(14.02), and in the direction &==• they give a value equal to zero 

for the field. 

§ 15. The Total Fringing Field 

Summing Expressions (13.28) and (14.05), it is not difficult to 
see that the total field scattered by a cylinder will ~qual 

where 

- -

)-(&) = ( MJ, (C)+ iN J, (C)] e'•' cos •- l 
.:...J 

- f (3) (J, (C)- il:(C>J e-iltlcos •. 

L (&) = [MJ. (C)+ iNJ, (C)] elUcos I-

-I {3) (J, (C) - i;J. (C)J e. -iftlcos t • 

C=2kasin& 

(15.01) 

(15.02) 

and the functions M, N and M, N are expressed only in terms of the 

function~ f and g which correspond to the asymptotic solution for a 
re angular 



M' M} N} =I (1)::;:: f (2), N = g (1)::;:: g (2), (15.03) 

or 

'IC 

~ij} sin -;; ( 1 1 ) =-- - -----= ::1::-----=-=-M n -+- ft n- 11 ' 
cos -;;--cos--;;- cos-,. -cos-n 

(15.04) • N} sinn 2 I I ) 
=;--n tc ::::+: • •-2&::;: • 2D • N (cos- -1 cos--cos- cos--cos-,. n n II II 

The functions f(3) and g(3) in turn are determined by the equation 

• • 

=-- -t- • 
'/(3) J siD n I _ I ) . 

" . • • =+21 g;(3) (co•;;- I .. coo,.-co•~ (15.05) 

Thus only the functions f and g are included in the final expressions 

for the scattering characteristic of a plane wave by a cylinder. 

In the direction 3=-: , the functions !(&)and t(3) take, as in 
the case of a disk, the values 

(15.06) 

and with 3=; they respectively equal 

(15.07) 

re z; = 2 terms t equation which contain the factor 
r t form p t• t 



In accordance with ( .17), thee ctive sc tering area of 

the cylinder is determined with the E-polarization of the incident 

wave by the function 

(15.08) 

and with the H-polarization of the incident wave by the function 

(15.09) 

Let us note that Expressions (15.02) for the scattering fi~ld 

may be obtained directly on the basis of an analogy with the 

Equations (12.06), omitting the calculation of the fields from the 

uniform and nonuniform parts of the current. In the same way, one 
may obtain the expressions 

. ~ . 
- - _ i-(cost+c•-., 
t(&, &,)=fMJ.(e)+iNJ1 (E)Je 2 

-
It I 

-1 -(eo~I+C'O!I.., 
.. -I (3) [J, (ij - w, (E)) e 2 

• 

• ltl 
l- (cost +ca. te) 

1:(&, &,)=[MJ.CO+lNJ1 ~)]e 2 
. -

(]5.10) 

- i !!(cost+ ca. le) 
- g (3) [J. (e) - u. {e)) e 2 

• 

wh~ch are suitable for calculating the fringing field in the region 
f=- ; ' . ; <3; &.<'It (3,=1t-,Y):. The quantities here equal 

c= ka(sin &+sin&,) (15.11) 

• M} sin-;: 
M =--;aX 

• • 

(15.12) N} 11nn 
- 2 --- ...... N ,. " &-&, - (cos--cos-,. II 



tC 

I (3) } ~ID -;;- I I ) 
a(J} = 11 ( tC &-lt,=t= • •+~+111 • 
5 ecs--cos- cos --cos.......;..---';.......;; (15.13) 

11 11 11 11 

Expressions (15.10) satisfy the reciprocity principle that 

is, they do not change their values if one interchanges & and &o. 

When &=&1 , they change into the previous E~pressions (15.02). 

" Equations (15.02) and (15.10) describe the radiation from the 
currents flowing only on part of the cylinder's surface: on the one 

end (when z.= ~)and on half of the lateral surface (-rr.:: 1jJ _:: 0). 
c.. 

Moreover, these expressions do not take into account the nonuniform 

part of the current caused by the curvature of the cylindrical sur
face. Therefore, they must be refined with values of 3 and &, 

which are close to ; and rr. However, in the case ll-= ll0 - that is, in 
the direction towards the source -- these corrections may be neglected 

if the parameters ka and kl are sufficiently large. Numerical cal
culations performed by us on the basis of Equations (15.02) show 

that this evidently may be done already when ka = rr and kl = 10 rr. 

The graphs of the functions =e. =I f(&)l' and (IH =I t(D) !1. constructed for 
;:a :ca• ( 1) 

this case in Figures 25 and 26 agree with the experimental curve 
(the dashed line): the position of the maxima and minima basically 

agree, and the number of diffraction fringes is the same. For the 

purpose of illustrating the effect of the ends, we constructed a graph 

of the effective scattering area for ~hose same values of ka and kl 
' taking into account only the uniform part of the current on the 

cylindrical surface (Figure 27). A comparison of Figures 25, 26 and 

27 shows that the effect of the ends begins to appear when 3 = 120°. 
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FOOTNOTES 

The experimental curves shown in Figures 25 and 26 
and a o those in Figures 31, 32, 65 -and 71 were 
obtained by Ye. N. Mayzels and L. S. Chugunova. 



CHAPTER IV 

DIFFRACTION OF A PLANE WAVE INCIDENT ALONG THE 

SYMMETRY AXIS OF FINITE BODIES OF ROTATION 

In this Chapter we will refine the physical optics approach 

for certain otherbodiesof rotation, whose surfaces have circular 
discontinuities. We will limit ourselves to the case when a plane 

electromagnetic wave falls on the bodies along their symmetry axis. 

As before, we will assume that the linear dimensions of the 
bodies are large in comparison with the wavelength. In this case the 

currents in the vicinity of a circular discontinuity of any convex 

surface of rotation:may be approximately considered to be the same 

as that on a corresponding conical body. Consequently, it is 

sufficient to study the field from the nonuniform part of the current 
which is caused by the circular discontinuity of the surface, using 

such a body as an example. 

§ 16. The Field Created by the Nonuniform 

Part of the Current 

Let a plane electromagnetic wave fall on a conical body in the 

positive direction of the z axis (Figure 28). From the relationships 

FTD-HC-23 59-71 90 



E=- ~~ (graddiv A+k'A),l 
• • 

H=rotA 
(16.01) 

we find the following expressions for the fringing field ~n the wave 

zone: 

E s = H 11 = ikAs• } a 0 w_ith v= 
E11 =-He= lkA, (16.02) 

and 

Es=-H~~=ikA:.:, } 6 with v= 1C. 
E fl.=: H s = ikA11: 

(16.03) 

The vector potePtial is determined by the equation 

2tt '· 

A= f e~lr J[J j 1 (CJ e::t:ik: ros •(a- C sin UJ) dC + 
0 0 

'· · + J 12 (C) e ::,;=ik! co" 2 (a-t sin. U) dCJ dtp. 

(16.04) 

0 

Here r is the distance from the discontinuity to the observation 

point, J 1 (~) is the surface current density flowing on the irradiated 

side of the body, and J 2 (~) is the current density on the shadowed 

side. The upper sign in the exponents refers to the case 3=-:::, and 

the lower sign refers to the case t_:o. Since the nonuniform part of 

the current is concentrated mainly in the vicinity of the discontin

uity, the vector potential corresponding to it may be represented in 

the form 
2r:: co 

A=~ ei:'J(JJ:(C)e:!:ik:coa•dC+ 
I 0 () 

. ao . + J J!(t) e~ il: cos •dt) d~ . . 
0 

(16.05) 

Obviously the nonuniform part of the current near the discontin

ui of a conical surface may be considered to be approximately the 

same as on a corresponding wedge (Figure 29). In the local cylindri-
e stem , $1 , 1 , t the nonuniform part 



Figure 28. Diffraction of a 
plane wave. by a conical body. 
The plane wave is propagated 
along the z axis. 

Figure 29. The dihedral angle 
corresponding to the discontin
uity of a conical surface. 

of the current flowing on such 

a wedge is determined in the 
far zone (kr

1 
>> 1) by the following equations: 

where 

Here the upper sign in the exponents refers to the case 

and the lower sign -- to the case ~l = w. On the other 
§ 4 it was shown that this field equals 

i(kr,+1-·) l 
E (9) = E t9H 1 _:__:_-=-~ . I 

z, liz, y2r.kr, f 
i (•'· + r) I 

Hz, ('f)= Hoz, (<f)g' e ' f r 2::kr 1 I 

(16.06) 

(16.07) 

~ = 1T + w, 
1 

hand, in 

(16.08) 

where E0::.(t!'), H
0
,, (~) are the values of the incident wave amplitude at 

< 1 
the wedge edge, and f and are angular functions characterizing 

sc t a 



us introduce signation 

(16.09) 

Equating Expressions (16.06) and (16.08), we find 

J _ cE0r,Nl /' J = cHat,C+) 1 
z, - ik2rc ' 'f• ik2a g · (16.10) 

The components Jz
1 

and J~ 1 are mutually perpendicular, and when 
3=0 and 3=• they are parallel to the plane xOy (Figure 30). The 
different orientation of the unit vector e~ 1 when &=0 and &=1: is 
connected with the fact that the angle ~l is measured from the irrad
iated face of the wedge. In the original x, y, z coordinate system 
the vector J has the components 

(16.11) 

and 

• with 3=1t. 
1:.: = J z. sin ? + J, cos+ , } 
lu =- lz, cos++ J., sin 'f' 

Substituting Expressions (16.10) here, we obtain 

and 

ls: = 1: 2• Cf'Eaz. (IJI)sintJt- g1HOzt (t)cos'f'J,, 
with 

lu =-;;;.(!'Eo., (rp) cos if'_+g'HO&; («Jt)sin +I 

l:c= ik~" (f':f'az.('t')sin·~+g'Hat,C+)cos+J. f ... 
c -Jwith 

ly =- ik2r. Ii' E,ts (9) cos lf' --~·HOt', ('i') sin 91 J . 

(16.12) 

(16.13) 

(16.14) 

Now identifying the current near the conical surface discontinuity 

the current on the wedge, we find the components of vector 
p i ( • 05) 



Figure 30. The relative 
orientation of the 
unit vectors e~ 1 and 
ez1 in the cases &~0 

and a-"·· 

• 
- g' H . (·'·)cos ·~ft/!!J o .... , T • r, 

2~ I 

A =- -:--- 11·•£ (b) cos!!~+ a ell• s . 
II tk2rc f 111'1 T • l 

II 

+g1H (b) sin ·!tJ d•'.J u.e, T , • 

and 

:Ze 

!I ---~- - - (/ E ('.J) ccs I:J --A .!J>· • a e u. • J , , , 
/k2'1C r I)Z1 • T 

0 

- 1(
1 H 0z

1 
(t{l) sin ·jJJ dt. 

l 

' 

I with D=0(16.15) 

I 
I 
I 

I . 

with It=..:. (16.16) 

Furthermore, let the plane wave be polarized in such a way that 

E0 II ox. Then 

(16.17) 

Considering these relationships and substituting Expressions (16.15) 
and (16.16) into Equations (16.02) and (16.03), we find the field 
from the nonuniform part of the current which is caused by the 
circular diBcontinuity of the conical surface 

E _ H _ aEu (f•+ 1 ) eu,. ) 
x-- ~~-~- g r 

E1,=Hs=0 I 

and 

Equation (16 18) is for the values O<;ot< 

) s 

4 

• 
t 

(16.18) 

(16.19) 

8<;1r, and 

ase of a 



disk (t•J = -n • ~ 1t), the field from the nonuniform part of the current 

equals zero on the z axis, since f 1 = -g1 = -1/2 when n = o , and 
1 . 

f = g1 = -1/2 when 3=1e [compare (8.16)]. 

Using the resulting relationships in the following sections,we 

will calculate the effective scattering area (in the direction 3= 1c ) 

for specific bodies. We shall assume that they are irradiated by 

the plane wave 

E -H -E e,,, 
X-- U- OX f (16.20) 

and their linear dimensions are large in comparison with the wave
length. 

§ 17. A Cone 

Let a cone (Figure 28) be irradiated by plane electromagnetic 

wave ( 16.20 );. The uniform part of the current which is excited on 

the cone's surface has the components 

c l· 
I~= •2a E," sin • eill'i, ,. 

t=~. ·. . 
I . . ;· , I c 17. 01) 

J! = ~ ~·~-~.~~~osteill• J. 
and creates in the direction 3..:... .-r (with R> lui.1

• R> kl2) the f'ie1d 

· . · ; eildl 
Es=-·H11 = -E0s 4a tg•co r+ 

) 

iU 

+E ( l t • + a t e lfl&t 
u 4t g • 2 g • R e • 

c 17. 02) 

Eu=H,.=O. 

Here the first term describes the spherical wave diverging f'rom the 

vertex of the cone, and the remaining terms describe the spherical 

wave from its base. 

caus t sc of e 



(16.19) by the expression 

, 2 l 1C • f -Sil-
4 n n eiltR 

Es=-H11 =-rEu{tgm+ :; )R e•Hzt, 

COifi - COl ,. I 
E,=H.=O, 1 

c 17.03) 

where 

c 17.04) 

An asymptotic calculation of the rigorous dif"fraction se::r.::::--ies 

for a semi-infinite cone [ 38-40] shows that in the direction it = :t 

one may neglect the effect of the nonuniform part of the cur::t:::""ent 

caused by the conical point. Therefore, summing ( 17.02) and < 17. 03) j 

we obtain the following expression for the fringing field: 

E, , -H,= -E,.[: tg' .. (l- e••>t>;+ 

2 • 
n SID/i 1 UR 

+ ka e11"'J~ • 2w 21fR• 
cos 11-:c:os -;; 

(17.05) 

8,:::::: H.==O. 

Let us point out the following important feature of' the :::t:'"esultiJ 

equation. - In the problems which were investigated in the pre-vious 

chapters, the edge waves of the fringing field were expressed only 

in terms of the functions f and g. But now in the equation :for the 

spherical wave from the cone's base, in addition to the term -which 

depends on f and g [the last term in the bracket of' Equation ( 17.05) 

there is an additional term [term ---t/2tg2
(1}.f

2ihl in Equation (17. 0 5)] 

whi~ does not depend on these functions and is determined by the 

uniform part of the current Therefore, it is impossible to :represe 

the resulting spherical wave from the cone's base only in ter-ms of' 

the functions f and g which characterize the total edge wave diagra 

the corre This important t was n.. ot 

i d [4 44] as cons e h i rs d 



not ucceed in obt correct results for a cone with an arbitrary 

aperture angle w(O < w < n ). 

The effective scattering area in accordance with (12.18) is 

determined by the equation 

(17.06) 

where the function E is connected with the fringing field by the 

relationship 

(17.07) 

and equals 

2 # 
-sln-

t= _I tg· 1 1uSink/eiltt+ n n e2iltl. 
ka K 2<At . 

(17.08) 
COS n -COl n 

The analogous function in the physical optics approach may be written 

in accordance with (17.02) in the form 

(17.09) 

With the deforming of the top part of the cone into a disk 

(aa-+ ; • 1.-0), Equations (17 .08) and (17 .09) are trans:formed, respec

tively, to the form 

~=:.__lka--1 ctg..!. l · n n ' 

( (17.10) 

Furthermore, it follows from (17.08) and (17.09) that :for large 

values of the parameter ka(ka >> tg2w) the functions I: and I: 0 may 

be represented in the form 

2 II 
-sin-n n. 

(17.11) 



• • 
( l 7.12) 

Thus even in the case of short waves ( ka >> tg2w, but R >> kZ 2 ), 

our Expression (17.08) does not change into the physical optics 

equation, but substantially differs from it because 

2 ft t 
-sln-n n 

(17.13) 
ft 21'At 

r.os--co•-. n n 

and 

( 17.14) 

With this 

l !sin~ ll' n n 
'J='Jo -

( ~ 2r.) . cos ·-n - cos ,. t g. 
(17.15) 

that is, for sufficiently short waves (or for sufficiently large 

dimensions of the cone) the function a is proportional to a 0 • The 

coefficient of proportionality here does not depend on the cone 
dimensions, but is determined only by its shape. 

This result is graphically illustrated by the curves giving 

the effective scattering area of a cone (w = 10°25', k = ~, n = 90°) 
as a function of its length (Figure 31). Whereas our equation (the 

continuous line) is in satisfactory agreement with the results of 
meas~rements (the small crosses)(l), the physical optics approach 

(the dashed line) gives values which are smaller than the experimental 

values by 1 15 dB. For sharply pointed cones, the nonuniform part of 

the current has an especially large values. In Figure 32, a curve is 

constructed for the effective surface of a cone (ka = 2.75 ~, 0 = 90°) 

e (l) ears on 13. 
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Figure 31. The effective scatter
ing area of a finite cone as a 
function of its length. The 
function a (the continuous line) 
was calculated on the basis of 
equation (17.06) which con
siders the nonuniform part of 
the current in the vicinity of 
the circular discontinuity. 
The function aO (the dashed 
line) corresponds to the physi
cal optics approach. 

with its deformation into a disk 

(w + 90°). The discrepancy be

tween our curve and the physical 

optics approach here reaches 

almost 30 dB when w = 2°. 

Expression (17.08) obtained 

by us also allows one, in con

trast to the physical optics 

approach (17.09), to evaluate 
the role of the shape of the 

shadowed part of the body and 
shows that the reflected signal 

will be larger, the closer this 

shape is to a funnel-shaped form 

( n ~ 1r - w). Thus, for example, 

in the case w = 10°, kl = 10 1T 

(k = 1r) the signal reflected by 

the cone may exceed by 15 dB the 

value corresponding to physical 

optics (see Figure 33) if n ~ 
170°. 

Let us note that our Expression (17.13) is equivalent to the 

expression presented in the above-mentioned papers [41, 44]. However, 

the latter expression is applicable only for sharply pointed cones, 

whereas we have, in addition to (17.13), Equation (17.08) which is 

suitable for cones with any aperture angle w ( O<u>·~-;::. )· 

The calculation method discussed may be generalized in the case 

of asymmetric irradiation of the cone. However, with asymmetric 

irradiation, generally speaking, it is necessary to take into account 

the nonuniform part of t current caused by the point of the cone. 

t 
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Figure 32. The effective scattering area·of a finite cone 
as a function of the vertex angle. 
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z axis of the plane figure shown 

in Figure 34. Integrating the 

uniform part of the current, it is 

not difficult to show that the 

field scattered in the direction 

tt=lt by the lateral sur:face o:r the 

truncated cone (Figure 35) is 

determined by the equation 

r ( i . :1 + a, t ) 2i11a + E :~. =- H 11 = E,:r. ·l- 4k tg •a 2 g "'1 . e 



I 

Figure 34. The generatrix of 
the surface of rotation. 

Figure 35. The generatrix of 
of a truncated conical surface. 

Summing this expressing with (17.02), where the quantities Z, and a 

must be replaced by z. 1 and a1 , we find the field from the un:t :form 

part of the current flowing on the entire illuminated side of" the 

body 

E:r. =-H 11 =-a, I!_!!(.!_ to·: w sin kl eiltlt- fgw e21111• + 
2 lka1 ~ • 

+[_I_ tgz co sin kl eiltl•+(t- ~~ e2if:l•)tg. Je'liltla \ eiltR . ka, t : a, <Da • I R • 
(17.17) 

The field radiat.ed by the nonuniform part of the current is 

determined in accordance with § 16 by the equation 

where 

[

I -~sin!!. . 

E H a,Eu \/ n, n, +t f ) 2iltla + :r. = - /1 =- -q- - 2 g w- g co. e 
- •• (&) 

cos --cos-. , n1 n1 

( 

2 ~ 
-sin+ a, _n_, _n,...,... 

a, r. 26)1 cos --cos-
n1 n1 

-1 +6) -w, -1 +(I)' +SJ n1 - = • n1 - -=- . 

(17.18) 

(17.19) 

Now summing (17.17) and (17.18), we obtain a re:f:tned expression 

for the field scattered in the direction 3=s 

H a1Eu:{ l t 1 • kl llcl•+ 
x =- 11 =- - 2-\ita, g <I) s1n ,e (17.20) 



2 'It: 
-sin-

+ __ n_, __ n_,;::-- e'llkl,+. _I_ tg'm sin kl eikt.· + Ziltl, + 
x kaa • ' 

cos--cos-
n:s n:a 

2 'It: ) -sin- kR + :: --:-• __ n_, 'A
2

(1)_
1
_ e2ik (1, + 1,) e~ : 

cos--coa-n:, n, 

Consequently, the effective scattering area will equal 

(17.20) 

(17.21) 

In the physical optics approach, the analogous quantity equals 

:. ., f I . 111 ·~r 
o' =-:a; ka, tg' m sin k!1e 1

•- tg we21 1
• + 

+ [ k~. tg' w, sin kl,~lkl, + ( 1 - :: e2ikl,) tg (I) I] e2ikla r. (17.22) 

When the top part of the cone is deformed into a disk (co-+;. 1 • .-..o), 
Equations (17.21) and (17.22) take the form 

t se e 

2 :; = "'tQJ 
'k 1 t 11: + I t s • kl ikla + - 1 a1 - - c g- k- g co1 sm ,e n1 n1 a1 

I 2 11: 
-sin

+a, __ n:, __ · _n:_, =--- e~!tltt, , 
a 1 ::: 2(1)1 cos --cos-

.n:, n, \ 

ssions ass = 0, we find t 

(17.23) 

(17.24) 

e 



in connection with which 

3 g 
n1 = -2 , n1 = 1·+- . 

!' 

(17.25) 

(17.26) 

( 17. 27) 

Equation (17.25) is more precise than Equation (15.06) which 
was derived in § 15, where the value of the field in the direction 

~=~ was taken in the physical optics approach. 

§ 18. A Paraboloid of Rotation 

Let us calculate the effective scattering area of a paraboloid 
'2 

of rotation r = 2pz (Figure 36) which is irradiated by plane wave 

(16.20). The uniform part of the current excited on the paraboloid's 

surface has the components 

.o c E · lkz ' 
l.oz = 2c;; . u; Sin a.e ' t 
/'=0, II 

J - -- E co·s c s ' Itz J z - 2:: oz • !7. o 7e • 

(18.01) 

Integrating this current, it is not difficult to show that in the 

direction n = n- it radiates the field 

(18.02) -

a 1 a Here a is the radius of the base of the paraboloid; I= 2, = 2 ctg m is 

its length; a is the angle between the z axis and the tangent to the 

x f p o ( = 2pz ) At the po z = Z, the 

«=m •= 

1 



Figure 36. Diffraction 
of a plane wave by a 
paraboloid of rotation. 

field from the nonuniform p 

of the current caused by the discontinuity 

of the paraboloid's surface is determined 

by Equation (17.03). The field from the 

nonuniform part of the current which is 

caused by the smooth curve of the para

boloid's surface equals zero in the case 

of symmetric radiation [45]. Therefore, 

summing (18.02) and (17.03) we find the 

expression for the resulting fringing 

field. 

(18.03) 

Consequently, the effective scattering area of the paraboloid 

will be determined by the relationship 

o =r.a2 

2 1t 
-sin-
n n 2ikl 

tg(l)+---~- e :; 2t.at 
cos n-cos-n 

(18.04) 

which, when the paraboloid is deformed into a disk (m...-.;. l -o, 0= 

const) , is transformed to the form 

(18.05) 

Comparing Expression (18.04) with the equation 

(18.06) 

which physical optics ves the e ctive scattering area, we 

see t y r si ficantly from one another. First f 1, 

t s 11 t r f tion a 0 our tention: 



t re ected si uals zero if a \'lhole number of half-waves 

(t = ~ n, n = 1, 2, 3 ···}is fitted into the length of the paraboloid, and 

it takes a maximum value if a half-integral number of half-waves 

( 
A. ( I . 

_,_ l = 2- \" + 2). n =1, 2, 3 ... ) is contained in this length. 

A calculation performed by us on the basis of Equation (18.04) 
for paraboloids with the parameters n = goo, tgw = 0.1 (k = n) shows 

(Figure 37) that, although the oscillating character of the effective 

scattering area is preserved, the amplitude of the oscillations is 

only 2 dB, and the maximum values of the functic;.l a exceed the corres

ponding values in the physical optics approach by almost 13 dB. A 

still stronger divergence between the results of our theory and 

physical optics is detected when the paraboloid is deformed into a 

disk (Figure 38, ka = 3n , k = n, n =goo, w + g0°). 

~----~----~-----r-----r-----r----~-----r----~ 
-10l;6 11·1' 
·---:c:$6' 1•411 

effective scattering area of a finite 
a function of its length with a constant 

w (t = 0.1). The diameter oft 
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Figure 38. The effective scattering area of a 
finite paraboloid as a function of its length 
with a constant radius of the base. 

in the case of a cone, the shape of the shadowed part turns 

out to ve a substantial influence on t reflected signal. For 
L a p ol d with p ers = 2~, kZ = 10 ~, 

ct ere s by 44 w 



II 

v-~ L 

( . 

tc-ZS !ft-c; 
'J'!-fl 
o'·• 

·tl 

3 

·11 I~ 

4 ~ 

' • a I 

Figure 39. The effective scatter
ing area of a finite paraboloid 
as a function of the shape of 
the shaded part. 

In concluding this section, 
let us dwell for a moment on 

the question of calculating the 

effective scattering area for 

bodies of rotation of a complex 

shape, whose elements are the 

lateral surfaces of truncated 

paraboloids. The field from the 

nonuniform part of the current 
arising in the vicinity of 

circular discontinuities may be 
determined without difficulty 

from Equation (17.03). The field 

from the uniform part of the 

current is found by quadratures. 

Thus, the field being created in 

the direction D= = by the uniform 
part of the current which flows on the lateral surface of the truncated 

paraboloid r 2 = 2pz(p = a 1tgw1 = a2tgw 2 ; see Figure 40) is determined 
by the equation 

(18.07) 

Here 

(18.08) 

is the height of the truncated paraboloid (the distance between its 

bases). Let us e that Equation (18.07) is a simple algebraic 

corollary of Expression (18.02): it is the difference of the fields 
4 

1. +Is= 2P and 
by the p olo 
scattered, respectively, by the paraboloid of height 

af of ight 1, == 
2

P • • 



§ 19. 

cident wave (16.20) excites a 

sur e current on the surface of an 

ideally conducting sphere (a radius of 

p and a center on the z axis the 

point z = p). The uniform part of 

Figure 40. The generatrix of 
the lateral sur ce of a 
truncated paraboloid of 
rotation. 

th current has the components 

.(J c E 6 {kz } lx=-2-; o.xCOS e • 

i~=O, ~ 

iZ :::;-:,;; c Eux sin e cos yeihz. J 

(19.01) 

The currents flowing on a spherical ring cut from the sphere's 

surface by the planes z = z1 and z = z1 + z2 (Figure 41) create, in 

the direction {} = r:: , the field 

E ~ H--E [-(a•t i) ~iki,, l .x - - ~ -- o.x 2 g w. - 4k e T 

+ ( ~l tg m:- 4~) e~i.t (1, + 1,) J _e'_;R- • , Jl 

E11 =Hx=0, 

(19.02) 

where 

11 =p(l-sinw1), } 

12 = p (sin m1 - sin w2); 

(19.03) 

(19.04) 

Here a 1 is the radius of the first cross section; a 2 is the radius 

of the second cross section; w1 (w 2 ) is the angle b ween the z ax 

and the tan to the meridian at the point z = Z
1

(z
2 

= z1 + Z2 ). 

hermore, assuming in uat (19.02) 

i l tics proach an res i eld 

nt ) 



Figure 41. A ring cut from the 
surface of its sphere by the 
planes z = zl and z = zl + z2. 

Figure 42. A spherical segment 
with a conically shaped base. 

Ex.=- HJJ;-Eu. [-2c:sc.a+ :~~+ 
( 

a i ) '21/tl ) etllR ( 19 0 5 ) + 2 tg 0,- 4k e · If · · 

Here we used the new designations 

a= a2 , co=co1, } 

l = 12 =p(l- sin (I)). (19.06) 

Equations (19.02) and (19.05) are simplified if ka1 >> 1 and 

ka2 >> 1. Thus, the field from the spherical ring will equal 

and the field from the spherical segment will equal 

aE "'ltl eiltR 
E~. -H11=- 2 .. (sec(J)-tg(l)e-' >r· 

If here one assumes w = O, then equation 

aE elltR 
E --H ---!!-.r- ~- • 2 R 

(19.07) 

(1~.08) 

(19.09) 

ves us t eld scattered by a hemisphere. The value of the 

e ive t area corresponding to it will equal, in 

c e h ( 7.06) 



Now let us find the field scattered by the spheric se 

considering the discontinuity of the surface; one may neglect the 

perturbation of the current as a consequence of the smooth curve of 

the surface if ka >> 1 [74]. The nonuniform part of the current 

which is caus~d by the discontinuity creates in the direction ~~~ 

the field (17.03). Summing the latter with the field (19.08), we 

find the desired field 

. ( 2 21: ) 
-sin-

E = _ H =- aEt:tt _1_+ n n 2ilrl etfiR 
s 11 2 cos ...., n . e R • 

cos- -cos-n n 

(19.11) 

Consequently, the effective scattering area of a spherical segment 

will equal 

a=1ra' 

2 ft 

1

. 
-stn-

I n n ~u cos;+ " 2...., e • 
cos 1i -cos li 

....,+g 
n=l+-- . • 

(19.12) 

In the physical optics app~oach, a similar quantity is determined 

by field (19.08) and equals 

t;;
0 = r.a' --- tg (!.) e~· . I 1 'l'fltl' 

cos Ql (19.13) 

With the deforming of the spherical surface into a disk -
(co~ ;;.J-+0, 0--:-const), Equations (19.12) and (19.13) are transformed, 

respectively, to the form 

a=-r.a'l ika+! ctg : r t l 
a• = -r.a' (ka)'. J 

(19.14) 

It follows from Equations (19.12) and (19.13) that the effective 

scattering area 

ts length. 

r d on t 

of a spherical segment is an oscillating 

oscillation period equals A Numerical 

basis of ese equations showed (Fi 

t ty (Q = 15 ), one 

rue d r e ti 

function of 

calculationf 

43) that, 
still 
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Figure 43. The effective scatter
ing area of a spherical segment 
as a function of its length with 
a constant radius of the base. 
The function a (the continuous 
line) is calculated on the basis 
of Equation (19.12) which con
siders the nonuniform part of 
the current near the discontin
uity. The function aO (the 
dashed line) is calculated from 
Equation (19.13), and corres
ponds to the physical optics 
approach. 

••·W:t 

~ .. Q•li* 

' . 
~\ 

~ 

\ \ 
1 r ~ ""' ' I \ !/ .............. ........... 

\I . 

' I I I 

Figure 44. A comparison of the 
effective scattering area of 
a spherical segmen~continuous 
line) and a finite cone (dashed 

line) which have the same bases. 

spherical segment and a finite 

cone (the dashed curve) which 

have the same diameter and base 

shape. 

* * * * * * 

The results obtain~d in this Chapter show that the reflected 

signal depends substantially on the shape of the shaded part of the 

body, and increases with an increase of the concavity. However, 

since the nont:.niform part of the current is concentratPd mainly near 

the discontinuity, that part of the shaded surface which is several 

wavelengths away from the discontinuity evidently will not have a 

notice e ct on the re ected signal and may be an arbitrary 



It is interesting that our expressions, which agree satisfactor

ily with experiments, even with large (in comparison with the wave

lengths) dimensions of the bodies, do not change into the physical 

optics equations, but differ from them substantially. At the same 

time, physical optics, contrary to the widely held opinion concerning 

its reliability in such cases, leads to a significant discrepancy with 

experiments. 

The method used in this Chapter allows one to calculate the 

effective scattering area associated with the symmetric irradiation 

of any convex body of rotation, the surface of which has circular 

discontinuities. It may also be generalized to the case of asymmetric 

irradiation. However, when doing this it is necessary to take into 

account the nonuniform part of the current caused by the point and • the smooth curve of the surface. 



FOOTNOTES 

l. on p 98. See footnote on page 86. 


