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forgiveness of noncompliance, and the collection of information on a firm’s compliance
activities and not just its compliance status. I show that forgiving noncompliance is
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1. Introduction

Economic models of regulatory enforcement typically assume that penalties for detected noncom-

pliance are certain and swift. Regulations are rigidly enforced and noncompliance when detected

is never forgiven. In the language of the policy literature on regulation, economic models typically

embody the “deterrent approach” to enforcement, first formalized by Becker (1968) and Stigler

(1970). Regulatory scholars have argued that this approach has proven ineffective at securing com-

pliance, and needlessly fosters an adversarial relationship between regulators and the regulated

(Bardach and Kagan 1982). The approach advocated by a number of scholars is the “cooperative

approach.” This approach favors selective enforcement that takes into account the circumstances

of observed violations (Scholz 1984) 1 In particular, under the cooperative approach, “regulators

are more inclined to interpret rules flexibly, particularly when they believe firms are making good

faith efforts to comply” (Harrison 1995). The cooperative approach, it is argued, is more likely to

result in cost-effective enforcement and desirable regulatory outcomes (Bardach and Kagan 1982).

Cross-country comparisons of "regulatory styles" in the enforcement of health, safety, and envi-

ronmental regulations indicate that the cooperative approach is common in Western Europe, Japan

and Canada, whereas the deterrent approach is common in the U.S. (Harrison 1995, Kitamura 2000,

Hawkins 1984). Even in the U.S., studies of enforcement find evidence of selective enforcement in a

range of regulatory settings. For example, guidelines for enforcement of water pollution regulations,

explicitly recommend that agencies be willing to forgive short-term violations, and that criminal

fines be reserved for willful or negligent violations (Russell et al. 1986, Chapter 3, and Code of

1As Scholz and others have observed, the differences between the two approaches are not always clear
cut. There is also considerable variation in terminology: the cooperative approach is also referred to as the
“compliance” or “bargaining” approach, and the deterrent approach as the “sanctioning” or “rule-oriented”
approach, among other possibilities. A third approach that has gained favor in recent years is “responsive
regulation” (Scholz, Ayres and Braithwaite 1992, Nielsen 2006). This approach is, roughly speaking, an
amalgam of the first two: the regulator first adopts a cooperative posture, but resorts to deterrence if the
firm proves recalcitrant.
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Federal Regulations 2004).2

In this paper, I show that a simple deterrence-based model of regulatory enforcement can be

extended to allow for selective enforcement that takes into account a firm’s efforts to comply. In

the model, the regulator forgives noncompliance if it is able to obtain sufficiently strong evidence

that the regulated firm had exerted a high level of compliance effort. This evidence takes the form

of an additional signal of the firm’s effort acquired by the regulator at some cost. This, possibly

multi-dimensional, signal represents the results of inspections of a firm’s records, interviews with

its employees, or evaluations of its processes and procedures for achieving compliance. Collection

of such information is a common element of enforcement practices.

The key benefit of forgiving noncompliance is, rather surprisingly, a reduction in the probability

with which the firm needs to be monitored. The additional signal of the firm’s compliance effort,

coupled with selective forgiveness, allows for an increase in the power of the regulator’s penalty

scheme. Thus, the model provides a simple efficiency-based justification for selective enforcement

based on an assessment of a violator’s efforts to comply. This is accomplished in the context of a

(noncooperative) principal-agent model with moral hazard.

The paper is related to several different strands in the existing literature on regulatory enforce-

ment. To the extent that it provides a justification for selective enforcement, it is related to work

by Garvie and Keeler explaining the variation in enforcement styles in the United States. They

analyze a model in which fines for noncompliance depend on the budget-constrained regulator’s

enforcement effort and on the characteristics of the judicial process. They show that the regula-

tor’s optimal enforcement style depends on the cost of monitoring and on the responsiveness of

judicially-determined fines to the regulator’s enforcement effort. The optimal enforcement style

2Further evidence of selective enforcement in the U.S. can be found in Harrington (1988), who describes
studies of U.S. environmental enforcement that reveal penalties are rarely imposed when violations are
discovered. This is not simply a manifestation of lax enforcement, since compliance rates appear to be
high. Hunter and Wasserman (1996) present similar results, and report that for 30 percent of the pollution
violations examined, no action was taken by regulators beyond telephone calls and meetings with firms.
Lofgren (1989) in a study of OSHA enforcement of safety and health regulations, reports that violations
routinely go unpunished, yet OSHA enforcement has been deemed quite effective (Weil 1996). For evidence
of selective enforcement in Europe, see, for example, the fascinating account by Hawkins (1984) of field-level
environmental enforcement in Britain.
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resembles the cooperative approach when monitoring is inexpensive and the responsiveness of fines

is limited (rendering fines more costly for the regulator); and resembles the deterrent approach

when monitoring is expensive and the responsiveness of fines is high.

The paper is also related to work by Jost (1997) on optimal enforcement when penalties are

subject to judicial appeal. He considers a model with deterministic compliance in which a regulator

must allocate its limited budget between two activities: monitoring, which yields an imperfect

signal of a firm’s compliance status, and investigations, which reveal compliance status perfectly.

Investigations are conducted only when a firm appeals penalties for noncompliance in court. The

appeal can result in penalties being waived.

The paper is also related, in spirit, to work by Nyborg and Telle (2004) that offers an explanation

for the warnings frequently issued by regulators upon detecting noncompliance. In their model, a

budget-constrained regulator attempts to control the behavior of firms that may be noncompliant

by mistake. Firms detected in noncompliance are issued warnings and can come into compliance

by incurring a “verification cost” in addition to the cost of compliance they would have incurred

had they been compliant from the outset. In this setting, warnings can reduce the probability of

accidentally switching from a full-compliance equilibrium to a no-compliance equilibrium.

The paper is arguably most closely related to a body of literature that attempts to explain the

paradox of widespread compliance with environmental regulations despite infrequent punishment of

noncompliance. Harrington (1988) shows that this paradox may be explained by a state-dependent

enforcement strategy in which penalties depend not only on current noncompliance but also on

past noncompliance. Livernois and McKenna (1999) provide an alternative explanation based on

a model in which firms must self-report their compliance status. Heyes and Rickman (1999) argue

that the paradox may reflect “regulatory dealing,” with the regulator choosing to forgive a firm’s

noncompliance in one context (e.g., air pollution control), in exchange for compliance in another

(e.g., water pollution control). In all three of these papers, the optimal penalty for some types of

noncompliance may be zero, in other words, some types of noncompliance may be forgiven.

The model presented here is similar to those in the literature just mentioned in that it yields

conditions under which setting the fine for noncompliance equal to zero is optimal. But it differs
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in a number of important respects. The model explicitly attempts to capture the key principle

underlying selective enforcement: that enforcement should take into account the circumstances of

a violation, in particular the extent of a violator’s efforts to comply. This is not true of any of the

existing literature.

The model also differs from those in the existing literature in that it incorporates, and justifies,

the practice of collecting information not just on a firm’s compliance status, but also on a variety of

other measures.3 In the U.S., for example, “compliance monitoring” by environmental regulators

typically includes inspection of production and abatement equipment, review of a firm’s records,

and interviews with its employees (Hunter and Waterman 1996, 39-46). Hawkins, and Nyborg and

Telle report similar practices in Britain and Norway. This additional information makes selective

enforcement possible in the model.

Consistent with the notion that firms may be noncompliant despite good faith efforts to comply,

compliance is modeled as being probabilistic. This reflects the fact that a firm’s compliance status

often depends on factors that are inherently difficult for it to control. For example, equipment

malfunctions or input quality variations may result in output that does not meet product quality

or product safety standards. In the case of pollution control regulations, violations can also occur

because of treatment process upsets (Russell et al. 1986, Chapter 3). More generally, compliance

can be probabilistic in any setting in which firms can make mistakes. Nyborg and Telle point out

that mistakes could arise from agency problems within the firm–the level of compliance effort

desired by the firm’s management may not be exerted by subordinates.

A final feature of the model is that it allows for the possibility that the regulator may only

be able to observe the firm’s compliance status imperfectly.4 This is true, for example, when

compliance with product quality or product safety standards is determined by examining a sample

of a firm’s output. In the case of environmental regulations, limitations of pollution measurement

techniques can result in a firm’s compliance status being observed imperfectly (Russell et al., 1986,

3An exception is Malik (2006), who presents a model of environmental regulation that incorporates
information on firm behavior other than its observed emissions. The focus of his paper is the design of
optimal environmental regulation rather than selective enforcement of regulations.

4Harford (1991) and Jost (1997), among others, allow for imperfect observation of compliance.
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Chap. 3). More generally, if noncompliance is a fugitive event, establishing that it occurred at a

later date is likely to be subject to error. For example, a temporary violation of a workplace safety

regulation may be difficult to detect after the fact. Similarly, an accidental discharge of pollution

into a water body may be difficult to detect, or attribute, once the pollutant has dispersed.

The basic model of regulatory enforcement is presented in the next section. In Section 3, I then

characterize the optimal enforcement policy under the assumption that fines are costless transfers.

I show that forgiveness can reduce the probability with which the firm must be monitored, yielding

savings in expected inspection costs. I also identify a sufficient condition for forgiveness to be

socially desirable. The two subsequent sections consider extensions of the basic model. Section

4 introduces fine costs and shows that these costs render the regulator more inclined to forgive

noncompliance. Self-reporting by the firm of its compliance status is introduced in Section 5. I

show that forgiveness may be even more likely in the presence of self-reporting. The final section

contains some concluding remarks.

2. Model

Compliance with a regulation is modeled as a binary event. The probability the firm is in compliance

p(a) depends on the level of compliance effort it undertakes a ∈ [0, a], with p(a)∈ [0, 1), p0 > 0

and p00 < 0. Thus, compliance is determined not only by the firm’s effort level, but also by other

random factors. Higher effort levels increase the probability of compliance, but never ensure it.

The firm’s effort costs are given by a smooth, strictly increasing and strictly convex function C(a).

The firm is monitored by the regulator with some probability m. Monitoring of the firm is a

prerequisite to assessing its compliance status and acquiring any other signals of its compliance

effort. The cost of a monitoring visit is given by cm. Assessing the firm’s compliance status during

a monitoring visit entails an additional cost cA. We can think of cm as capturing the cost of simply

visiting the firm, whereas cA captures, for example, the cost of measuring the firm’s pollution

emissions. These two types of costs are typically lumped together in models of enforcement. The

reason they are separated here will become evident further below. To simplify exposition, I will

use the term inspection cost to refer to the sum (cm + cA).
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Assessments of the firm’s compliance status may be subject to error. The firm may be perceived

to be in noncompliance even though it was actually compliant, and vice versa. Let θN |N denote

the probability that the regulator correctly concludes that the firm is noncompliant, and let θN |C

denote the probability that it does so incorrectly. The probabilities θC|C and θC|N are defined

analogously. The accuracy of the regulator’s assessment technology is higher the larger is θN |N

and the smaller is θN |C . If assessments are perfectly accurate, θN |N = 1 and θN |C = 0. The

difference θN |N − θN |C (which equals θC|C − θC|N), is a measure of the accuracy of the assessment

technology. As is plausible, I assume the assessment technology has some discriminating power, so

the probability of correctly observing the firm’s compliance status is larger than the probability of

incorrectly observing it. Thus,

α ≡ θN |N − θN |C ∈ (0, 1] (1)

The compliance status perceived by the regulator represents the first signal of the firm’s effort

level acquired by the regulator. If the firm is perceived to be in compliance, no fine is imposed and

no additional signals are acquired the regulator. If the firm is perceived to be in noncompliance,

the regulator conducts an “investigation” and acquires another (verifiable) signal of the firm’s effort

level at a cost cs. This signal s is drawn from a finite set S. The set S may be multidimensional,

and it may contain both quantitative and qualitative information, as is plausible for the outcome of

an investigation of firm behavior.5 Two different types of variables may be contained in the signal

s: (1) variables that are a deterministic function of effort level a but can only be observed by the

regulator with error, and (2) variables that are inherently randomly related to a. An example of the

first type of variable would be the regulator’s observation of the degree to which the firm followed

procedures consistent with achieving compliance, based on inspections of the firm’s records and

interviews with its employees. An example of the second type of variable would be the state of

equipment needed to achieve compliance, specifically whether or not the equipment was in working

order. Equipment break downs are presumably random, with the probability of one occurring

depending on the firm’s compliance effort.

5See Sinclair-Desgagne (1994) for the theory of multi-signal principal agent problems.
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The probability of observing a particular signal s ∈ S is given by q(s|a), which is assumed to
be a continuously differentiable function of a, with6

q(s|a) > 0 ∀{s,a} ; for every a , qa(s|a) 6= 0 for some s. (2)

The first assumption is a standard one and ensures that the moral hazard problem is not trivial.

The second assumption ensures that for every effort level, at least some signals are informative.

Since {q(s|a), s ∈ S} is a probability distribution, the following relationships must also hold:

X
s∈S

q(s|a) ≡ 1,
X
s∈S

qa(s|a) = 0 ∀a. (3)

The latter equality together with the second assumption in (2) implies that for every effort level a,

qa(s|a) < 0 for some signals and qa(s|a) > 0 for others.
The fine imposed on the firm for noncompliance can depend on the signal observed, and is

written f(s). Following Harrington, and Heyes and Rickman, among others, there is an exogenously

specified maximum fine F . This is typically determined by legislation, the firm’s assets, or what

courts are likely to consider reasonable. I assume the magnitude of F is such that it does not induce

the firm to shut down, yet it is large enough to ensure the existence of a solution to the regulator’s

problem. Initially, fines are treated as costless transfers, I introduce fine costs in Section 4.

As is common in principal-agent models, I assume the regulator is able to commit to its enforce-

ment policy at the start of the game. Furthermore, the firm’s cost function C(a), the probability

functions p(a) and q(s|a), and the characteristics of the assessment technology, θN |N and θN |C , are

assumed to be common knowledge. The model differs from a typical principal-agent model by the

absence of a participation constraint. By assumption, the regulation is mandatory, and the firm

cannot exempt itself from being regulated. The participation constraint is replaced by a limited

6As implied by the above formulation, the firm’s (true) compliance status and the signal s are assumed to
be conditionally independent given the firm’s effort level. This assumption, that the signals of the agent’s
effort observed by the principal are conditionally independent, is common in the related literature on optimal
auditing, e.g., see Dye (1986). The assumption is relevant only when the regulator’s assessment technology
is imperfect. When the technology is perfect (α = 1), s is acquired by the regulator only when the firm is
actually in noncompliance.
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liability constraint, which reflects the above-mentioned restrictions on the maximum fine for non-

compliance.7 Inclusion of a participation constraint restricting the magnitude of the firm’s total

costs (which consist of effort costs plus expected fine costs) would not mitigate the desirability of

forgiveness. As shown below, forgiveness invariably lowers the firm’s expected fine costs. There-

fore, for a given effort level, a participation constraint that is binding when the regulator never

engages in forgiveness would not be binding when the regulator engages in forgiveness; similarly, a

constraint that is not binding in the first scenario also would not be binding in the second one.

3. Costless Fines

The firm’s problem is to choose the effort level that minimizes the sum of its effort costs and

expected fine costs:

min
a≥0

C(a) +m[1− p(a)]θN |N
X
s∈S

q(s|a)f(s) +mp(a)θN |C
X
s∈S

q(s|a)f(s). (4)

The third term reflects the possibility of the firm being erroneously fined for noncompliance. The

term drops out if compliance assessments are perfectly accurate. For a > 0, the first-order condition

for the firm’s problem is

C 0(a) +m

(
[θN |N−p(a)α]

X
s∈S

qa(s|a)f(s)− p0(a)α
X
s∈S

q(s|a)f(s)
)
= 0. (5)

7The absence of a participation constraint and the inclusion of a limited liability constraint are quite
common in principal-agent models of regulation. See, for example, Innes (1999) and Malik (1993). This type
of model structure is plausible to the extent that regulation of the firm is socially desirable and F is not so
large as to induce the firm to shut down.
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This condition constitutes the incentive compatibility constraint faced by the regulator.8 Note that

the expression in braces must be negative for the condition to hold. The sign of the first term in

braces is determined by the sign of the sum in this term, since θN |N − p(a)α ≡ θN |N [1 − p(a)]+

θN |Cp(a) > 0.

The regulator’s problem can be divided into two stages, as in Grossman and Hart (1983). In

the first stage, the benevolent regulator minimizes the expected social costs of inducing the firm

to select some effort level a > 0. In the second stage, the regulator then chooses the effort level

that minimizes total expected social costs, which consist of the social costs captured in the first

stage objective function plus the social costs associated with noncompliance and the firm’s effort

costs. Given the focus of this paper, I will restrict attention to the first-stage problem. The second

stage simply calls for balancing the expected marginal social cost of inducing higher effort and the

marginal benefit of lower expected noncompliance.

The regulator’s first-stage problem can be written

R(a) ≡ min
m≥0, f(s)≥0

m[cm + cA] +m
©
θN |N [1− p(a)] + θN |Cp(a)

ª
cs, (6)

subject to the incentive compatibility constraint (5), and a limited liability constraint,9

f(s) ≤ F ∀s. (7)

The two terms on the RHS of (6) capture expected inspection costs and expected investigation costs,

respectively. Note that the objective function and constraints are linear in the decision variables.

8The condition is both necessary and sufficient for a unique optimum if the firm’s objective function is
strictly convex,

C 00(a) +m

(
[θN |N − pα]

X
s∈S

qaaf − 2p0α
X
s∈S

qaf − p00α
X
s∈S

qf

)
> 0.

The first term on the LHS and the third term in braces clearly have the correct sign. This is also true of
the second term in braces given (3) and the result obtained below that f(s) = F unless qa(s|a)/q(s|a) is
positive and sufficiently large, in which case f(s) = 0. The sign of the first term in braces is ambiguous, but
the inequality will clearly hold even if the term is negative, provided it is not too large.

9In general, a constraint m ≤ 1 is also required. To avoid clutter, I have omitted this constraint, and
assume that the parameters of the problem ensure a solution with m ∈ (0, 1].
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As a result, the Kuhn-Tucker conditions for the problem are both necessary and sufficient.

The structure of the objective function in (6) reflects the assumption that the regulator acquires

the signal s only if the firm is perceived to be in noncompliance. Thus, acquisition of s is contingent

on the firm’s perceived compliance status. One could instead assume that acquisition of s is not

made contingent on the firm’s perceived compliance status. It is easily verified that the regulator’s

costs would be higher in this case given the assumption that α > 0, i.e., that the probability of

correctly detecting noncompliance is higher than the probability of incorrectly detecting it.10 Thus

the regulator is better off making investigations contingent on the firm’s perceived compliance

status, as one would expect.

3.1 Optimal Fines and Inspection Probability

To put the effects of forgiveness in perspective, let us first consider a setting in which the regulator

never conducts investigations and never forgives noncompliance. The regulator simply imposes a

fine f whenever noncompliance is perceived. In this setting, the incentive compatibility constraint

reduces to

C 0(a)−mp0(a)αf = 0, (8)

and the second term in the regulator’s objective function in (6) drops out. For this case, the optimal

enforcement policy is easily characterized:

Result 1 When the regulator never forgives noncompliance, the firm is monitored with probability

m∗ = C 0(a)/p0(a)αF , and the maximum fine is imposed whenever noncompliance is perceived,

f
∗
= F .

This policy reflects the conventional result in the literature on crime and punishment: to set fines

at their maximum level if they are costless transfers (Becker 1968). This allows the probability of

10For a given value of a, the optimal values of m and f(s) are no different when acquisition of s is not
contingent on the firm’s perceived compliance status. This stems from the fact that: (i) the incentive
compatibility constraint remains the same, and (ii) the regulator’s objective function in (6) changes only to
the extent that the expression in braces is replaced by one. A comparison of the modified objective function
and the original one yields the conclusion that, given α > 0, the regulator’s costs are lower when acquisition
of s is contingent on the firm’s compliance status.
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the fine (m) to be reduced, lowering expenditures on inspections.

I now turn to the consequences of forgiveness. The primary objective is to demonstrate that for

some signals s, setting fines for noncompliance equal to zero, i.e., forgiving noncompliance, can be

optimal given that an investigation is conducted. Whether or not it is socially desirable to conduct

costly investigations is a question that is deferred to Section 3.3.

Given the linearity of the regulator’s problem in (5) — (7), its solution can be partly charac-

terized by examining the objective function and constraints. The optimal value of the monitoring

probability is determined by the incentive compatibility constraint (5), which can be rewritten

m∗ =
C 0(a)

−[θN |N − p(a)α]
P

s∈S qa(s|a)f∗(s) + p0(a)α
P

s∈S q(s|a)f∗(s)
, (9)

where f∗(s) denotes the optimal values of the fines. The optimal fines can be characterized using

the relevant Kuhn-Tucker conditions:

Φf ≡ µm
©
[θN |N − p(a)α]qa(s|a)− p0(a)αq(s|a)ª+ λ(s) ≥ 0, Φf · f(s) = 0 ∀s, (10)

where µ and λ(s) are the Lagrange multipliers associated with the the constraints in (5) and (7),

respectively. It is not difficult to show that µ must be positive;11 λ(s) is by construction non-

negative.

Since f(s) does not appear in (10), the optimal fines will, in general, take on values of either

zero or F .12 If the expression in braces in (10) has a negative sign, the first condition in (10) will

hold as an equality with λ(s) > 0, and the optimal fine will equal F . The expression in braces

obviously has a negative sign when qa < 0; it may also have a negative sign when qa > 0. However,

11If µ were negative, (10) would imply that f(s) = F when the expression in braces is positive, but if this
were true then (5) could not hold because the expression in braces in (5) would be positive.

12Depending on the exogenously given values of θN |N , α, q(s|a), qa(s|a), p(a) and p0(a), the expression in
braces in (10) could take on a value of zero for some s. In such cases, the magnitude of the fine is irrelevant,
for ease of exposition, I assume it is set equal to F .
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it has a positive sign when qa > 0 and

LS(s, a) ≡ qa (s|a)
q(s|a) >

p0(a)α
θN |N − p(a)α

≡ −LN (a, α). (11)

If the above inequality holds for some signal s, (10) implies it is optimal to set f(s) = 0 and forgive

noncompliance. Let S0 ⊂ S denote the set of signals for which (11) holds.

The LHS of the inequality in (11) is simply the likelihood ratio associated with the signal s. The

RHS is the negative of the likelihood ratio associated with the signal “noncompliance perceived,”

which I denote by N : −LN(a, α) ≡−dln{[1 − p(a)]θN |N + p(a)θN |C}/da The magnitude of this

likelihood ratio is positively related to the accuracy of the regulator’s assessment technology, with

−LN(a, α)⇒ 0 as α⇒ 0, − LN (a, α)⇒ p0(a)
1 − p(a)

as α⇒ 1. (12)

−LN (a, α) is a measure of the evidence conveyed by perceived noncompliance of the firm having

chosen a low effort level. Analogously, LS(s, a), the LHS of (11), is a measure of the strength of

evidence conveyed by the signal s that the firm had chosen a high effort level. Thus, the inequality

in (11) indicates that the regulator will choose to forgive noncompliance if, and only if, the evidence

conveyed by the signal s of the firm having a chosen a high effort level is stronger than the evidence

conveyed by perceived noncompliance of the firm having a chosen a low effort level. This finding

is consistent with Holmstrom’s (1979) result that additional signals of an agent’s effort choice are

valuable only if they alter the principal’s ex post assessment of the agent’s effort choice.

Since −LN (a, α) approaches zero as the accuracy of the assessment technology decreases, the

inequality in (11) will invariably hold for some s if the accuracy of the assessment technology

is sufficiently low. In the limiting case where α = 0, perceived noncompliance is ignored when

determining the magnitude of the fine. The fine is based solely on the sign of LS(s, a), with a fine

imposed if, and only if, LS(s, a) < 0. These observations imply that the cardinality of S0, n(S0),

will be (weakly) larger the lower is the accuracy of the assessment technology.

It might seem implausible for α to take on values near zero, and for the regulator to virtually

ignore direct assessment of a firm’s compliance status when determining the magnitude of a fine.
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However, this could well occur in some circumstances, especially when noncompliance is a fugitive

event.13

The set of signals for which (11) holds, and forgiveness is optimal, also depends on the desired

level of effort a, though not in an easily predicted manner. It is readily verified that the LHS of

(11) is decreasing in a given the plausible assumption that qaa < 0 when qa > 0. However, the sign

of the derivative of the RHS with respect to a is ambiguous given the corresponding assumption

that p00 < 0.

It should be emphasized that inaccurate assessments are not necessary for forgiveness to be

optimal. The inequality in (11) can hold when assessments are perfectly accurate (α = 1). Whether

or not it holds in this case depends on the relative magnitude of qa(s|a)/q(s|a) and p0(a)/[1−p(a)].
It is only if their relative magnitude is such that (11) does not hold for any signal s that f(s) = F

∀s, and the optimal enforcement policy is no different than that described in Result 1.14

Therefore, we have:

Proposition 1 The regulator will choose to forgive noncompliance for some signals s if they con-

stitute sufficiently strong evidence of the firm having chosen a high effort level. The set of signals

for which noncompliance is forgiven, S0, is (weakly) larger, the lower is the accuracy of the regu-

lator’s assessment technology, α. For signals s /∈ S0, it is optimal to impose the maximum fine F

for perceived noncompliance.

The set of signals for which noncompliance is forgiven can be characterized, at least partially, if

some structure is imposed on the set of possible signals S. Consider the simplest case where S is a

vector of values ordered from smallest to largest. If we make the common assumption that LS(s, a)

satisfies the monotone likelihood ratio property, so LS(s, a) is increasing in s, noncompliance will

be forgiven (if it is at all) for large values of s, since they constitute stronger evidence of the firm

13Nyborg and Telle describe another possibility, drawn from Norwegian regulatory practice. Some reg-
ulations limit the amount of pollution a firm can emit over a period of a year. In such cases, the level of
pollution observed during a monitoring visit may tell the regulator little about the firm’s compliance with
the annual limit. As a result, the regulator is more inclined to make inferences about the firm’s compliance
effort on the basis of other information collected during a monitoring visit.

14For this case, given (3), the denominator in (9) reduces to p0(a)αF .
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having chosen a high effort level.15

The structure of the optimal enforcement policy in Proposition 1 implies that the signals in

S can be aggregated to yield a binary statistic that is mechanism sufficient (Demougin and Fluet

1998); that is, the binary statistic can be used to induce the firm to choose the desired effort level

a at the same cost as that incurred when the signal s is observed. The relevant binary statistic is

Y =

⎧⎪⎪⎨⎪⎪⎩
0 if s ∈ S0

1 if s ∈ S0

(13)

where S0 = S\S0 is the set of signals for which the maximum fine is imposed. The probability that
Y = 0 is captured by σ(a), where

σ(a) ≡
X
s∈S0

q(s|a). (14)

By forgiving noncompliance when Y = 0 and imposing the maximum fine when Y = 1, the regulator

can duplicate the outcome obtained when the signal s is observed. The usefulness of this binary

statistic will become evident shortly. Note that its likelihood ratio is given by σa(a)/σ(a).

3.2 The Benefit of Forgiveness

Given the form of the regulator’s objective function in (6), the benefit of forgiving noncompliance

must be a reduction in the monitoring probability needed to satisfy the incentive compatibility

constraint, reducing expected inspection costs, m[cm+cA]. This seems contrary to the conventional

wisdom that inspection costs are reduced by setting higher fines. The seeming contradiction stems

from the fact that, for a given monitoring probability, the additional information provided by the

signal s combined with selective forgiveness, enables the regulator to increase the marginal benefit

to the firm of choosing a higher effort level, as captured by the expression in braces in (5). In other

words, the regulator is able to increase the power of the penalty scheme, allowing the regulator to

15A similar result can be obtained if s is a multidimensional signal and S is a lattice that has a component-
wise partial ordering. If LS(s, a) satisfies the monotone likelihood ratio property (see Sinclair-Desgagne 1994),
then forgiveness is associated with large values of the vector s.
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satisfy the incentive compatibility constraint with a lower monitoring probability.

The reduction in the monitoring probability is characterized in

Result 2 When forgiveness is optimal, it reduces the monitoring probability needed to satisfy

the incentive compatibility constraint. The magnitude of this reduction is: (i) negatively related

to the accuracy of the assessment technology, α; and (ii) positively related to the difference in

likelihood ratios ∆σ ≡ σa(a)/σ(a)−[−LN(a, α)], except when an increase in ∆σ is accompanied by

a proportionally larger decrease in the value of σ(a)[θN |N − p(a)α].

The proof is provided in the Appendix. Result 2 implies that, in general, the benefit of forgiveness

is larger the less accurate is the regulator’s assessment technology, and the larger is the difference

in likelihood ratios ∆σ ≡ σa(a)/σ(a)−[−LN(a, α)].

The reduction in the monitoring probability, together with the fact that noncompliance is not

always punished, yields

Corollary 1 The firm’s expected costs are lower when the regulator engages in forgiveness.

Thus, as we would expect, the firm is better off when the regulator selectively forgives noncompli-

ance.

3.3 When are Investigations Desirable?

The above analysis demonstrates that investigations coupled with forgiveness can be socially desir-

able, because of their potential to reduce expected inspection costs. But investigations are costly

to conduct. They will reduce the social costs of achieving a desired effort level only if the expected

costs of conducting investigations are offset by the reduction in expected inspection costs. I now

derive a simple sufficient condition under which this offset occurs.

Making use of (6) and Result 1, investigations coupled with forgiveness are desirable if, and

only if, R(a) < R(a), where R(a) ≡ cm∗ denotes the regulator’s indirect objective function when

investigations are never conducted. Now consider the regulator’s objective function when investi-

gations are conducted, but noncompliance is forgiven only for the realization of s that yields the
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largest value of the likelihood ratio LS(s, a) ≡ qa(s|a)/q(s|a); thus, for this realization, labeled
sM , (11) must hold. Let RM(a) denote the regulator’s objective function for this case. Clearly,

RM(a) ≥ R(a), since it may be optimal to forgive noncompliance for other realizations of s. There-

fore, RM(a) < R(a) is a sufficient condition for investigations to be desirable.

Some algebra establishes that RM(a) < R(a) if, and only if,

cs
cm + cA

<
qa(sM |a)
p0(a)α

− q(sM |a)
θN |N − p(a)α

. (15)

Let K denote the critical value of the cost ratio represented by the RHS of (15). Note that K

does not depend on C 0(a) or F. Furthermore, from (11), K must be positive given the premise that

it is optimal to forgive noncompliance when sM is observed. The value of K will depend on the

values of θN |N and θN |C (recall α ≡ θN |N − θN |C). As shown in the Appendix, ∂K/∂θN |N < 0.

This implies, roughly speaking, that investigations are more likely to be desirable, the lower is

the regulator’s ability to correctly detect noncompliance. Correspondingly, ∂K/∂θN |C > 0, i.e.,

investigations are more likely to be desirable the lower is the regulator’s ability to correctly detect

compliance. Comparing (11), with s = sM , to the RHS of (15), we can see that the value of K is

also related to the difference in likelihood ratios, ∆S ≡ LS(sM , a) − [−LN(a, α)]. In fact, we can

write K ≡ [q(sM |a)/p0(a)α]∆. This expression reveals that an increase in ∆S would result in a

larger value of K, except in the case where the increase in ∆S is accompanied by a proportionally

larger reduction in the value of q(sM |a)/p0(a)α, a possibility that cannot be ruled out.
These results are summarized more formally as follows:

Proposition 2 Investigations, together with forgiveness, reduce social costs if the ratio cS/(cm+cA)

falls below some critical value K. This critical value does not depend on the marginal cost of effort

(C 0(a)) or the maximum fine (F ). It is a decreasing function of the accuracy of the regulator’s

assessment technology, α; and it is an increasing function of the difference in likelihood ratios

∆S ≡ LS(sM , a)− [−LN (a, α)] except when the increase in ∆S is accompanied by a proportionally

larger decrease in q(sM |a)/p0(a)α.

We can get some sense of the magnitude of K by calculating its value for hypothetical values
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of the underlying probabilities. The results of this exercise are presented in Table 1. For the

initial, and baseline, calculation, I assume the regulator’s assessment technology is perfect, so

α = θN |N = 1. Let the probability of the firm being in compliance, p(a) = 0.8. Let the probability

of sM being observed, q(sM |a) = 0.2, as is not unreasonable if the set of possible signals S has

multiple elements, with sM being the signal that conveys the strongest evidence of the firm having

chosen a high effort level. Note, from (15), that K depends on the ratio qa(sM |a)/p0(a)α . Let
this ratio equal 4, which implies, given the other values assumed, that LS(sM , a) = 4 · [−LN (a, α)],

ensuring that forgiveness is optimal when sM is observed. For these values, K = 3, as shown in the

first row of the table, i.e., investigations are desirable if the cost of conducting an investigation is no

more than three times as high as the cost of conducting an inspection. The next three rows show

the effects of changes in the ratio qa(sM |a)/p0(a). When qa(sM |a)/p0(a) = 1, K = 0, which implies

that investigations are not desirable, since cS/(cm + cA) cannot be negative. In fact, forgiveness is

not optimal for this case (and this case alone) since LS(sM , a) = −LN(a, α).

The second set of results show the effect of varying the probability of compliance, while holding

other probabilities at their baseline values, and the third set shows the effect of varying the proba-

bility of observing sM (which is also the probability of forgiveness). These variations result in values

of K that range between 2 and 3.5. The last two sets of results show the effects of introducing

modest errors in the assessment technology. K then takes on values between 3.3 and 6.0.

In practice, the relative magnitude of investigation costs and inspection costs (cS/(cm+ cA)) is

likely to vary widely across regulatory settings. In some cases, investigation costs may well be lower

than inspection costs, whereas in others they may be much higher. The results in Table 1 suggest

that investigations can be socially desirable even when the cost of conducting an investigation is

several times higher than the cost of conducting an inspection. This is particularly true when the

regulator’s assessment technology is imperfect.

4. Costly Fines

The model presented in the previous section embodies the common assumption that fines are

costless transfers. But there are invariably administrative costs associated with collecting fines.
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In addition, fines may be subject to costly administrative or judicial reviews. Accordingly, in this

section I incorporate fine costs in the model. Specifically, I allow for a constant unit (or marginal)

fine cost, cf . It may be more plausible to assume that fine costs are fixed, and invariant with the

magnitude of the fine. However, fixed fine costs make the analysis much more tedious, and yield

results that are qualitatively identical to those with a constant unit fine cost.

I begin, once again, by considering the benchmark case in which investigations are never con-

ducted and noncompliance is never forgiven. The regulator’s (first-stage) objective function now has

an additional term, capturing expected fine costs: m[cm+cA]+m
©
[1− p(a)]θN |N + p(a)θN |C

ª
cff.

The constraints of the regulator’s problem are unchanged. In particular, the incentive compatibility

constraint is still given by (8). Intuition suggests that the presence of fine costs should alter the

optimal enforcement policy and lower the optimal fine. This is not true, however. Fine costs have

no effect on the optimal enforcement policy, regardless of their magnitude:

Result 3 When the regulator never forgives noncompliance, the presence of fine costs does not

alter the optimal enforcement policy: it is still optimal to impose the maximum fine F whenever

noncompliance is perceived, and to monitor the firm with probability m∗ = C 0(a)/p0(a)αF .

This result can be explained as follows. Suppose the fine is not set equal to its maximum value

F . The regulator could then raise the fine to F and lower the monitoring probability so that the

expected fine for noncompliance, mf , is unchanged. These changes would not affect the incentive

compatibility constraint nor would they alter the magnitude of the second term in the regulator’s

objective function, since both are functions of mf . However, they would lower expected inspection

costs (the first term in the regulator’s objective function), lowering the total costs faced by the

regulator. This result holds a fortiori if fine costs are fixed and do not vary with the magnitude of

the fine.

I now turn to the model with forgiveness. Once again, fine costs result in an additional term in
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the regulator’s (first-stage) objective function,

min
m≥0,f(s)≥0

m[cm + cA] +m
©
θN |N [1− p(a)] + θN |Cp(a)

ª
cS

+m

(
[1− p(a)]θN |N

X
s∈S

q(s|a)f(s) + p(a)θN |C
X
s∈S

q(s|a)f(s)
)
cf , (16)

but leave the constraints of the problem, (5) and (7), unchanged. Accordingly, the optimal in-

spection probability is still given by the expression in (9), however, its magnitude will differ to the

extent that the optimal fine scheme is altered. The Kuhn-Tucker conditions for the optimal fines

can be written:

Φf ≡ cf + µ

½
qa(s|a)
q(s|a) −

p0(a)α
θN |N − p(a)α

¾
+

λ(s)

m[θN |N − p(a)α]q(s|a) ≥ 0, Φf · f(s) = 0 ∀s, (17)

where, as before, µ is the Lagrange multiplier for the incentive compatibility constraint and λ(s) ≥ 0
is the multiplier for the limited liability constraint. It can be verified quite easily that µ must still

be strictly positive.

From (17), we can see that forgiveness now requires

cf
µ
+

qa(s|a)
q(s|a) >

p0(a)α
θN |N − p(a)α

. (18)

The presence of the fine cost term implies that this condition is less stringent than the earlier

condition in (11). Therefore, (18) invariably holds for all signals that satisfy (11), s ∈ S0, and it

may hold for some s /∈ S0. Thus, the set of signals for which noncompliance is forgiven is weakly

larger when fines are costly: n(Sf
0 ) ≥ n(S0) with S

f
0 ⊃ S0, where S

f
0 denotes the set of signals that

satisfy (18).

This result is consistent with common intuition. We would expect the regulator to be more

inclined to forgive noncompliance when fines are costly. Because forgiveness may now be motivated

by the desire to reduce fine costs, the optimal monitoring probability may now be larger than when

fines are costless, m∗f ≥ m∗, to compensate for the reduced frequency with which fines are imposed.
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This can be established by inspecting the denominator of the expression in (9) for the optimal

monitoring probability. Suppose there is some signal s0 for which it is optimal to impose a fine

f(s0) > 0 when fines are costless but not when they are costly. Then the expression for m∗f differs

from that for m∗ by the absence of the term

©−[θN |N − p(a)α]qa(s
0|a) + p0(a)αq(s0|a)ª f(s0) (19)

in the denominator of m∗f . From (11), we can determine that this expression must have a positive

sign given the premise that f(s0) > 0 when fines are costless. Thus, we can conclude that if

n(Sf
0 ) > n(S0), m∗f must be larger than m∗; however, if Sf

0 = S0, m∗f = m∗.16

These results are summarized as follows:

Proposition 3 When fines are costly to impose the set of signals for which the regulator forgives

noncompliance, Sf
0 , is (weakly) larger than when fines are costless, S

f
0 ⊃ S0. In addition, the

optimal monitoring probability may be larger, m∗f ≥ m∗. For signals s /∈ Sf
0 , it is optimal to impose

the maximum fine F for perceived noncompliance.

Because forgiveness may now be motivated by the desire to reduce fine costs rather than inspection

costs, it is no longer possible to state unequivocally that forgiveness lowers the optimal monitoring

probability (m∗f < m∗). As a result, we cannot rule out the possibility that the regulator’s expected

inspection costs are now higher when it engages in forgiveness. The regulator’s expected fine costs

must be lower, however, as can be verified by examining the regulator’s objective function in (16).17

A comparison of (16) and (4) shows that the regulator’s expected fine costs are linearly related

to the expected fine faced by the firm. The above observation therefore implies that the firm’s

16Qualitatively identical conclusions hold if fine costs are fixed. For each value of s for which f(s) > 0
when fines are costless, the regulator would now have to compare the benefit of a positive fine, as captured
by the reduction in expected inspection costs due to a lower monitoring probability, to the fixed fine cost.
Positive fines would be retained only for those values of s for which this benefit exceeds the fixed fine cost.

17If the optimal monitoring probability is higher when the regulator engages in forgiveness, then forgiveness
must reduce the expected fine costs incurred by the regulator (captured by the third term in (16)). There
would, otherwise, be no reason to engage in forgiveness. If the optimal monitoring probability is lower,
then expected fine costs must be lower, since forgiveness implies that perceived noncompliance is not always
punished.
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expected costs continue to be lower when the regulator engages in forgiveness. Thus, we have:

Corollary 2 When fines are costly, forgiveness may not result in a lower monitoring probability.

However, it invariably lowers the regulator’s expected fine costs, and the expected costs faced by the

firm.

5. Self-Reporting

A common feature of regulations is the requirement that firms self-report their compliance status

(Malik 1993, Kaplow and Shavell 1994, Innes 1999). In this section, I incorporate self-reporting

in the model and show that forgiveness can be optimal in this setting as well. Forgiveness can

now occur in two scenarios: when the firm reports noncompliance and when it is perceived to have

dishonestly reported compliance. For the sake of brevity, I only allow for forgiveness in the first

scenario. Although forgiveness may be desirable in the second scenario, it hinges on θN |C , the

probability of the regulator incorrectly concluding that the firm is noncompliant, being sufficiently

large. To identify the effects of self-reporting more easily, I ignore fine costs.

The firm’s compliance status is now assessed only if it reports itself in compliance. Let mC

denote the probability that it is monitored following such a report and an assessment of its com-

pliance status conducted. If the assessment indicates the firm is in noncompliance, it is fined an

amount fNC , where NC denotes the event “noncompliance perceived when compliance reported.”

If the firm reports noncompliance, there is presumably no need for an assessment of the firm’s

compliance status. However, the regulator does conduct an investigation and acquires the signal

s, so as to be able to selectively forgive noncompliance. In order to conduct an investigation, the

regulator must visit the firm, incurring the monitoring cost cm, in addition to the investigation cost

cS.

For the firm to report its compliance status truthfully, the expected fine it faces when honest

must be lower than the expected fine it faces when dishonest.18 When the firm is in noncompliance,

18The revelation principle allows us to restrict attention to incentive compatible policies that induce
truthful reporting. I assume, as usual, that if the firm is indifferent between being honest and dishonest, it
chooses to be honest.
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truthful reporting requires X
s∈S

q(s|a)fN (s)−mCθN |N fNC ≤ 0, (20)

where fN (s) denotes the fine imposed when the firm self-reports noncompliance. When the firm is

in compliance, truthful reporting requires

mCθN |CfNC −
X
s∈S

q(s|a) fN (s) ≤ 0. (21)

The first term in (21) reflects the possibility of the firm being erroneously fined for noncompliance

when it reports compliance. Intuition suggests that (21) should not be binding at an optimum.

This is, in fact, correct. Comparing (21) and (20), we can see that if (20) is binding, then (21) will

invariably hold as a strict inequality, since θN |C < θN |N (see (1)). To simplify the exposition, I will

proceed by solving a relaxed problem in which (21) is ignored and show that (20) is binding at the

solution to this relaxed problem.

Assuming the truth-telling constraint in (20) holds, the firm always reports noncompliance

honestly, and its problem takes the form19

min
a≥0

C(a) + [1− p(a)]
X
s∈S

q(s|a)fN (s) + p(a)mCθN |CfNC . (22)

Given a > 0, the first-order condition for the firm’s problem, and the incentive compatibility

19The firm’s objective function reflects a typical paradox of principal-agent models: the regulator can
mistakenly punish the firm for dishonestly reporting compliance even though it “knows,” given the structure
of the game, that the firm must have submitted an honest report. Ignoring perceived dishonest reporting
would, of course, eliminate the firm’s incentive to report truthfully.
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constraint faced by the regulator, is20

C 0(a) + [1− p(a)]
X
s∈S

qa(s|a)fN(s)− p0(a)
X
s∈S

q(s|a)fN(s) + p0(a)mCθN |CfNC = 0. (23)

Absent fine costs, the regulator’s problem is

min
mC≥0, fN (s)≥0, fNC≥0

p(a)mC [cm + cA] + [1− p(a)][cm + cS ], (24)

subject to (23), the truth-telling constraint (20), and two limited liability constraints,21

fN(s) ≤ F ∀s; (25)

fNC ≤ F. (26)

The first term in the objective function captures expected inspection costs, and the second, expected

investigation costs. The former are incurred only when the firm reports compliance and the latter

only when it reports noncompliance. Note that this problem is also linear in the decision variables.

As before, I first characterize the optimal enforcement policy when the regulator does not

conduct investigations and never forgives noncompliance. The truth-telling constraint (20) then

simplifies to fN − mCθN |NfNC ≤ 0, and the incentive compatibility constraint (23) reduces to

C 0(a) − p0(a)fN + p0(a)mCθN |CfNC = 0, where fN is a constant fine. Since the regulator does

not conduct investigations, the second term in the regulator’s objective function (24) drops out.

20The condition is both necessary and sufficient for a unique optimum if the firm’s objective function is
strictly convex,

C00 + [1− p]
X
s∈S

qaafN − 2p0
X
s∈S

qafN + p00
(
mCθN |CfNC −

X
s∈S

qfN

)
> 0.

The first term clearly has the correct sign, as does the third term using an argument similar to that in
footnote 8. The last term also has the correct sign, because, as argued above, (21) invariably holds as a
strict inequality at the solution to the regulator’s problem. The sign of the second term is ambiguous. The
inequality will hold even if this term is negative, provided it is not too large.

21Once again, to reduce clutter, I omit the constraint for the monitoring probability and assume that the
parameters of the problem ensure mC ∈ (0, 1].
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Following Malik (1993), it can be determined quite easily that the optimal enforcement policy takes

the following form:

Result 4 (Malik 1993) When the firm is required to self-report its compliance status and the

regulator never forgives noncompliance, the firm is fined an amount f
∗
N < F when it reports

noncompliance. When it reports compliance and is perceived to have done so falsely, it is fined an

amount f
∗
NC = F .

The fine for reported noncompliance, f
∗
N must be set below F , because the truth telling constraint

would not hold otherwise. The precise value of f
∗
N is determined by the incentive compatibility

constraint. Setting f
∗
NC = F is optimal since it lowers the monitoring probability needed to satisfy

the truth-telling constraint.

Let us now characterize the optimal enforcement policy with forgiveness. It is easily verified

that setting fNC = F is still optimal. The optimal values of the fines for reported noncompliance,

fN(s), are determined by the Kuhn-Tucker conditions:

ΦSRfN ≡
τ

1− p(a)
+ µ

½
qa(s|a)
q(s|a) −

p0(a)
1− p(a)

¾
+

λN (s)

[1− p(a)]q(s|a) ≥ 0, Φ
SR
fN
· fN(s) = 0 ∀s, (27)

where τ ≥ 0 is the multiplier associated with the truth-telling constraint in (20), λN(s) ≥ 0 is the
multiplier associated with the limited liability constraint in (25), and µ is the multiplier associated

with the incentive compatibility constraint, (23). I show in the Appendix that µ > 0, as before,

and that τ > 0, so the truth-telling constraint is binding (as claimed earlier).

From (27), we can see that reported noncompliance is forgiven when the signal s is observed if,

and only if,
τ

µ[1− p(a)]
+

qa(s|a)
q(s|a) >

p0(a)
1− p(a)

. (28)

Comparing this condition to (11), the condition for forgiveness to be optimal in the absence of self-

reporting, we see that the LHS of (28) is larger given the presence of the additional term associated

with the truth-telling constraint. The RHS of (28) is also larger than the RHS of (11) if θN |C > 0;

but if θN |C = 0, it is of the same magnitude. Therefore, in general, we cannot specify whether
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reported noncompliance is more, or less, likely to be forgiven than perceived noncompliance absent

self-reporting. But if the assessment technology is such that the firm is never mistakenly found

to be in noncompliance (θN |C = 0), then reported noncompliance is more likely to be forgiven,

since (28) is then less stringent than (11). By continuity, this conclusion must also hold for values

of θN |C sufficiently close to zero. Note that this requirement on the value of θN |C is weaker than

the requirement that the assessment technology be perfect (α = 1), or nearly so. This would

additionally require that θN |N equal one or be sufficiently close to one.

Letting SSR
0 denote the set of signals for which reported noncompliance is forgiven, we can

therefore write:

Proposition 4 Forgiveness may be optimal when the firm self-reports noncompliance. When

θN |C = 0 or is sufficiently close to zero, the set of signals for which self-reported noncompliance is

forgiven, SSR
0 , is (weakly) larger than the set of signals for which noncompliance is forgiven in the

absence of self-reporting, SSR
0 ⊃ S0.

An examination of the regulator’s objective function in (24) indicates that the benefit of forgiveness

must be a reduction in the monitoring probability mC . There is no other avenue by which forgive-

ness can be beneficial to the regulator. This implies that the expected fine for falsely reporting

compliance, mCθN |NfNC , which is the second term in the truth-telling constraint (20), must be

smaller when the regulator engages in forgiveness (recall that setting fNC = F is optimal whether

or not the regulator engages in forgiveness). Since (20) is always binding, this, in turn, implies that

the first term in (20),
P

q(s|a)fN(s), the expected fine for reported noncompliance, must also be
lower when the regulator engages in forgiveness. These observations, together with the form of the

firm’s objective function in (22), yield

Corollary 3 When the firm is required to self-report its compliance status, forgiveness lowers the

optimal monitoring probability and the firm’s expected costs.

Thus, as before, the firm is better off when the regulator conducts investigations and selectively

forgives noncompliance.
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6. Concluding Remarks

By extending a simple deterrence-based model of regulation to incorporate an additional, possibly

multi-dimensional, signal of the regulated firm’s compliance effort, I have shown that selectively

forgiving noncompliance can be socially desirable. The additional signal of effort corresponds to

information commonly collected by regulatory authorities on firms’ compliance activities. The

model thus explains selective forgiveness of noncompliance and the collection of information on a

firm’s compliance activities and not just its compliance status.

If fines are costless transfers, selective forgiveness allows the regulator to reduce the probability

with which it needs to conduct costly inspections of the firm. If fines are costly, another benefit

of selective forgiveness is a reduction in the fine costs incurred by the regulator. The benefits

of selective forgiveness must be weighed against the costs of conducting the investigations that

yield the additional signal of the firm’s effort. In the basic model examined, with costless fines

and no self-reporting of compliance status, I identify a simple sufficient condition under which

investigations are socially desirable. The condition indicates that investigations are desirable under

a range of circumstances, especially if the regulator is only able to assess the firm’s compliance

status imperfectly. From the firm’s perspective, forgiveness is always desirable, since it reduces the

firm’s expected costs.

One of the assumptions underlying the analysis is that the regulator is benevolent and minimizes

social costs. The results obtained would be much the same for a budget-constrained regulator that

maximizes the probability of compliance or minimizes the expected social losses from noncompliance

(as in Nyborg and Telle, and Heyes and Rickman). Regulators with either of these objectives would

want the firm to choose the highest effort level possible, given the regulatory budget constraint.

Hence, the regulator would still want to minimize the regulatory costs of achieving a given effort

level, as is true of the benevolent regulator. Thus, regulators with these objectives would view

forgiveness no less favorably than a benevolent regulator. The same would not be true, however,

of a regulator that valued expected fine revenues, so that some weighted value of these revenues

were subtracted from its objective function (as in Grieson and Singh 1990, for example). Such a
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regulator would view forgiveness less favorably, because, as we have seen, forgiveness reduces the

expected fines paid by the firm. The degree to which such a regulator would engage in forgiveness

would depend on the precise form of its objective function and the weight attached to fine revenues.

Another assumption underlying the analysis is that acquisition of the signal s is contingent on

the firm’s perceived compliance status. But s, or some component of it, could be acquired first,

and assessment of the firm’s compliance status could be conditioned on its realization. This would

be desirable when assessing the firm’s compliance status is relatively costly, as is true for some

environmental regulations (e.g., see Russell et al. 1986, Chapter 2; Hunter and Waterman 1996,

39-46). In such cases, the regulator could first acquire a less costly signal of the firm’s compliance

effort (e.g., by inspecting the condition of the firm’s physical plant), and then assess the firm’s

compliance status only if this signal suggested that the firm had chosen a lower-than-desired effort

level. Russell et al. (Chapter 2) and Nyborg and Telle report that this is not uncommon in

practice. This sequence of events could be accommodated by modifying the model so that the

signal s is acquired in the first stage and the firm’s compliance status is assessed in the second

one. In such a model, scope for forgiveness would be eliminated: if the realization of s induced

the regulator to assess the firm’s compliance status, the regulator would invariably punish the

firm if noncompliance were perceived–there would otherwise be no reason to incur the assessment

cost cA. Scope for forgiveness could be restored by adding a third stage and separating out the

components of s into those that can be acquired at low cost (relative to cA) and those that can

only be acquired at high cost. Let sL and sH denote these two types of signals. The regulator

would begin by acquiring sL and conditioning the decision to assess the firm’s compliance status

on its realization. If an assessment is conducted and indicated noncompliance, the regulator would

then acquire the signal sH . Fines would be contingent on the realization of sH in the same way

that fines are contingent on the realization of s in the model presented here.
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Appendix

A.1 Proof of Result 2

This result is most easily established by working with the reciprocals of the optimal monitoring

probabilities with and without forgiveness, and examining the difference (1/m∗−1/m∗). The larger
is this difference, the larger is the reduction in the monitoring probability achieved by forgiveness.

Using Result 1, along with (3) and (9), the difference can be written

1

m∗
− 1

m∗
≡ F

C 0(a)

⎧⎨⎩[θN |N − p(a)α]
X
s∈S0

qa(s|a)− p0(a)α
X
s∈S0

q(s|a)
⎫⎬⎭ . (A-1)

We can establish that the expression in braces is positive as follows. By definition, for s ∈ S0,

noncompliance is forgiven and the expression in braces in the first condition in (10) is positive.

Summing the expression in braces in (10) for all s ∈ S0 yields the expression in braces in (A-1),

which, in turn, must be positive.

Now consider the effect on (A-1) of a reduction in α from α0 to α00, due either to a reduction

in θN |N or an increase in θN |C . We know from Proposition 1 that S0 is weakly larger the smaller

is α. Thus we can write n(S000 ) ≥ n(S00) with S00 ⊂ S000 . First consider the case where S0 is

unchanged: S00 = S000 . A reduction in α due to an increase in θN |C unambiguously increases the

difference (1/m∗−1/m∗), since it increases the magnitude of the first term in braces in (A-1) while
reducing the magnitude of the second one. The effect of a reduction in θN |N is less transparent,

since it reduces the magnitude of both terms. However, we know that the first sum in braces is

positive, as is the second sum. As is easily verified, the relative weight attached to the first sum,

[θN |N−p(a)α]/p0(a)α, is decreasing in θN |N . Therefore, a reduction in θN |N increases the difference
(1/m∗ − 1/m∗).

Now consider the case where n(S000 ) > n(S00). Let D ≡ S000\S00 denote the set of additional signals
for which noncompliance is forgiven as a result of the reduction in α. The expression in braces in
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(A-1) will now be augmented by the term

[θN |N − p(a)α]
X
s∈D

qa(s|a)− p0(a)α
X
s∈D

q(s|a). (A-2)

This term must also have a positive sign given (10). Thus, the magnitude of the difference (1/m∗−
1/m∗) is further increased.

Finally, using (14), equation (A-1) can be rewritten as

1

m∗
− 1

m∗
≡ σ(a)[θN |N − p(a)α]F

C 0(a)

½
σa(a)

σ(a)
− p0(a)α
[θN |N − p(a)α]

¾
. (A-3)

The expression in braces is the difference in likelihood ratios, ∆σ, specified in Result 2. As can be

seen from (A-3), an increase in ∆σ will imply a larger value for (1/m∗− 1/m∗), unless the increase
in ∆σ is accompanied by a proportionally larger reduction in the value of σ(a)[θN |N − p(a)α]. The

possibility of such a reduction cannot be ruled out.

A.2. Signs of ∂K/∂θN |N and ∂K/∂θN |C

Recall that K represents the RHS of (15). Differentiating the RHS of (15) with respect to θN |N

yields
∂K

∂θN |N
≡ −qa(sM |a)

p0(a)α2
+

q(sM |a)[1− p(a)]

[θN |N − p(a)α]2
. (A-4)

It can be verified that this expression is negative given the fact that α[1− p(a)] < [θN |N − p(a)α]

and the premise that forgiveness is optimal when sM is observed (so (11) holds).

Differentiating the RHS of (15) with respect to θN |C yields

∂K

∂θN |C
≡ qa(sM |a)

p0(a)α2
+

p(a)q(sM |a)
[θN |N − p(a)α]2

, (A-5)

which is positive since qa(sM |a) > 0 when forgiveness is optimal, as is true by assumption when

s = sM .
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A.3. Establishing µ > 0 and τ > 0 given Self-Reporting

I first rule out µ = 0 and then rule out µ < 0. If τ > 0, then µ = 0 implies that the first condition

in (27) always holds as an inequality, which in turn implies fN (s) = 0 ∀s. But then (20) cannot be
binding, contradicting the premise that τ > 0. If τ = 0, then the following first-order condition for

the monitoring probability, mC , cannot hold when µ = 0:

p(a)[cm + θN |CcS] = τθN |NfNC − µθN |Cp0(a) fNC . (A-6)

Now suppose µ < 0. Then (27) implies fN (s) > 0 only if [1 − p(a)]qa(s|a) − p0(a)q(s|a) > 0,

which in turn implies that the sum of the second and third terms in (23) must have a positive sign.

But then (23) cannot hold, because the fourth term is non-negative.

We can now rule out τ = 0. Given µ > 0, (A-6) does not hold if τ = 0.
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Table 1: Hypothetical Values of K

qa(sM |a)/
p0(a)

p(a) q(sM |a) θN |N θN |C K

4 0.8 0.2 1 0 3

2 0.8 0.2 1 0 1

1 0.8 0.2 1 0 0

6 0.8 0.2 1 0 5

4 0.7 0.2 1 0 3.3

4 0.9 0.2 1 0 2

4 0.8 0.1 1 0 3.5

4 0.8 0.3 1 0 2.5

4 0.8 0.2 0.9 0 3.3

4 0.8 0.2 0.9 0.1 4.2

4 0.8 0.2 0.9 0.2 5.1

4 0.8 0.2 0.8 0 3.7

4 0.8 0.2 0.8 0.1 4.9

4 0.8 0.2 0.8 0.2 6.0
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