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Why does Bad News Increase Volatility and
Decrease Leverage?

Ana Fostel ∗ John Geanakoplos†‡

June 28, 2010

Abstract

The literature on leverage until now shows how an increase in volatility
reduces leverage. However, in order to explain pro-cyclical leverage it assumes
that bad news increases volatility. This paper suggests a reason why bad news
is more often than not associated with higher future volatility. We show that,
in a model with endogenous leverage and heterogeneous beliefs, agents have
the incentive to invest mostly in technologies that become volatile in bad times.
Together with the old literature this explains pro-cyclical leverage. The result
also gives rationale to the pattern of volatility smiles observed in the stock
options since 1987. Finally, the paper presents for the first time a dynamic
model in which an asset is endogenously traded simultaneously at different
margin requirements in equilibrium.
Keywords: Endogenous Leverage, Post-Bad News Volatility, Post-Good News
Volatility, Volatility Smile.
JEL Codes: D52, D53, E44, G01, G11, G12

1 Introduction

After the recent financial crisis there is almost universal agreement on two stylized
facts:

1. Leverage is pro-cyclical, i.e., high during normal times and low during anxious
or crisis times. Figures 1 and 2, taken from Geanakoplos (2010), show leverage
and asset prices for the housing market and for AAA Securities. They both
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show that leverage is pro-cyclical: prices rise as leverage increases, and prices
fall as leverage decreases. In particular, both leverage and prices collapsed
during the recent financial crisis.

Figure 1: Pro-cyclical leverage: Housing.

2. Bad news, at least very bad news, is associated with very high volatility. Figure
3 shows the VIX index, the Chicago Board Options Exchange Volatility Index,
a popular measure of the implied volatility of SP 500 index options. A high
value corresponds to a more volatile market and therefore more costly options.
Often referred to as the fear index, it represents one measure of the market’s
expectation of volatility over the next 30 day period. We clearly see that the
index was very high during the recent financial crisis implying that bad news
indeed came associated with high volatility.

So, why does bad news increase volatility and decrease leverage? Recent lit-
erature has gone quite far in understanding the link between high volatility
and low leverage.1 However, all this work assumes that bad news is associated

1For example, Geanakoplos (1997, 2003, 2009) shows how supply and demand determine equilib-
rium leverage and why higher volatility reduces leverage. He suggested that big crises occur when
bad news is of a particular kind he called “scary bad news”, because it raises volatility (as well as
decreasing expectations) and hence reduces leverage.
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Figure 2: Pro-cyclical leverage: AAA Securities.

with higher volatility. This lack of explanation is problematic for two reasons.
First, because the way information (and bad news) gets revealed in an econ-
omy should be endogenous. Second, because if we do not have a theory that
explains why bad news induces high volatility we are only half way in explain-
ing the pro-cyclical pattern of leverage observed in the data. The main goal of
this paper is to shed light on this missing link and hence fully understand the
relationship between news, volatility and leverage.

With this in mind we consider two types of projects (assets) with exactly the
same payoff distribution in the last period. In the first project, bad news comes
associated with an increase in future payoff volatility. We call this the “Post-
Bad News Volatile project” (from now on BV). In the second project good
news induces high future payoff volatility. We will call this the “Post-Good
News Volatile project” (from now on GV).2

Three BV examples of bad news inducing higher volatility are: i) an airline
announces that the plane is now expected to be 10 minutes late, which makes
people worry it will be an hour late, ii) a bank announces it has lost $5 billion,

2Since these two projects are ultimately identical, in the BV project good news induces low
volatility and in the GV project bad news induces low volatility.
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Figure 3: VIX index.

which makes investors fear another $20 billion may follow, and iii) subprime
delinquencies shoot up from 2% to 5%, which makes people worry they may
go up to 30%. A GV example of good news inducing higher volatility might
be that after a presidential candidate wins a crucial primary he may become
president or be destroyed by a hitherto unknown scandal.

Notice that in the three BV examples each piece of bad news reveals only a
little information about expected outcomes but creates a lot of uncertainty,
while in the GV example it is the good news that raises expected outcomes a
little but creates much more volatility.

In our model agents can use these projects (assets) as collateral to borrow
money, and leverage is endogenous. Agents are presented with a menu of one-
period non-contingent promises, each collateralized by one unit of asset (or
project). Leverage becomes endogenous since in equilibrium not all promises
are actively traded. Financial contracts are micro founded by a collateralized
loan market. We suppose that agents differ only in their beliefs (heterogenous
priors).

We first study prices and leverage of each project when it is the only asset
in the economy. As shown in Geanakoplos (2003) and Fostel-Geanakoplos
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(2010), in this context leverage is endogenously determined in equilibrium, and
corresponds to the “Value at risk equal zero” rule. Agents can promise at
most the worst case scenario in the future preventing default from occurring in
equilibrium. We study both projects in a three period economy first, and then
extend the results to longer horizons.

The main findings are: i) the initial price in the BV project is higher than in
the GV project, ii) initial leverage is higher in the BV project than in the GV
project and iii) leverage is pro-cyclical in the BV project and counter-cyclical
in the GV project.

Why do the projects have different prices and leverage characteristics in equi-
librium? First, BV is more valuable than GV at the beginning because it can
be leveraged more. A higher borrowing capacity implies that all the assets in
the economy can be afforded by fewer and extremely optimistic investors with
the highest asset valuation. This naturally raises the project’s price. Second,
the BV project can be leveraged more at time zero due to the type of bad news.
Given the endogenous leverage rule, the maximum agents can promise is the
worse case scenario in the immediate future: the price of the project after bad
news. But in the BV project the price does not fall as much precisely because
bad news is little informative. On the contrary, bad news in the GV project
is very informative, lowering the promise in equilibrium. Finally, the cyclical
properties derived in each project are a direct consequence of the difference in
volatility after bad news between the projects.

Having understood all the properties of prices and leverage in each individual
project we move on to answer the main question. If these projects were con-
sidered as part of the same economy, which project would agents choose: one
in which volatility goes up after bad news (BV) or one in which volatility goes
up after good news (GV)?

We consider an extended version of the previous three-period baseline economy
in which both projects co-exist and agents own a technology that can transform
labor into a portfolio of different projects. Unlike the previous case, “Value at
Risk equal zero” is not the only contract traded in equilibrium. As shown in
Fostel-Geanakoplos (2010), two non-contingent promises will be actively traded
in equilibrium for each asset: a risk-less promise and a risky one that defaults in
the worst state. Each contract has an associated leverage, and asset leverage
is defined as the average leverage over all the traded contracts that use the
asset as collateral. Two new things appear in this extended model (that were
not in the baseline model with one asset) which are more in tune with what
we observe in the real world. First, there is default in equilibrium and second
the same asset is traded simultaneously at different margin requirements by
different investors.
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We show that all agents choose mainly the BV project. In fact, in the simulated
equilibrium all agents choose to invest their labor in a portfolio with a 70%
share of the BV project. Or equivalently, 70% of the economy invest in BV
projects when given the opportunity to choose. Moreover, both projects present
the same leverage characteristics as when considered separately, i.e. the BV
project can be leveraged more than GV project and leverage is pro-cyclical
in the BV project and counter-cyclical in the GV project. Of course, the
immediate implication of this finding is that, since we assume that both projects
are independent, most of the times when we observe bad news we will observe
high volatility and low leverage explaining both stylized facts above.

This result also suggests an explanation for the observed “Volatility Smile” in
stock options. This refers to the fact that implied volatility has a negative
relationship with the strike price, so volatility decreases as the strike price
increases. Hence, bad news comes (or are assumed to come) with high volatility.
This effect is even larger when considered on indexes as SP500. This pattern has
existed for equities only after the stock market crash of 1987. This has led some
economist like Bates (2000) and Rubinstein (1995) to explain volatilites smiles
by “crashophobia”. Traders were concerned about the possibility of another
crash and they priced options accordingly. Our result provides a completely
different explanation. Our agents are perfectly rational, they endogenously
chose projects associated with volatile bad news since they can leverage more
with them.

The paper is related to a literature on collateral and credit constraints as in
Bernanke, Gertler and Gilchrist (1999), Caballero and Krishnamurthy (2001),
Fostel and Geanakoplos (2008a), Holmstrom and Tirole (1997), Kiyotaki and
Moore (1997) and Shleifer and Vishny (1992). More closely, our paper is related
to a literature on leverage as in Araujo, Kubler and Schommer (2009), Acharya
and Viswanathan (2009), Adrian and Shin (2009), Brunnermeier and Peder-
sen (2009), Cao (2010), Fostel and Geanakoplos (2008b and 2010), Geanakoplos
(1997, 2003 and 2010), Gromb and Vayanos (2002) and Simsek (2010). It is also
related to work that studies the asset price implications of leverage as Hindy
(1994), Hindy and Huang (1995) and Garleanu and Pedersen (2009). Some of
these papers focus on investor-based leverage as in Acharya and Viswanathan
(2009), Adrian and Shin (2009) and Gromb and Vayanos (2002), and oth-
ers as Brunnermeier and Pedersen (2009), Cao (2010), Fostel and Geanakoplos
(2008b and 2010), Geanakoplos (1997, 2003 and 2009) and Simsek (2010) focus
on asset-based leverage. Not all these models present a theory of endogenous
leverage, most of them assume a “VAR=0” rule and study the cyclical prop-
erties of leverage as well as its asset pricing implications. In Acharya and
Viswanathan (2009) and Adrian and Shin (2009) the endogeneity of leverage
relies on asymmetric information and moral hazard problems between lenders
and borrowers. In Araujo et. al (2009), Cao (2010), Geanakoplos (1997, 2003,
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2009), Fostel-Geanakoplos (2008) and Simsek (2010) endogeneity does not rely
on asymmetric information, rather financial contracts are micro founded by
a collateralized loan market. However, while all of these papers related low
leverage with high volatility, none of them explain or endogenize the type of
bad news, but rather assume that bad news comes with an increase in volatil-
ity. Furthermore, our paper is the first model to solve fully for endogenous
leverage in a dynamic economy with a continuum of agents and more than two
successor states. Geanakoplos (1997) showed how to make leverage endogenous
by defining a contract as an ordered pair (promise, collateral) and requiring
that every contract be priced in equilibrium, even if it is not actively traded.
In Geanakoplos (1997, 2003, 2009) and Fostel-Geanakoplos (2008) only one
contract is traded. Araujo et.al (2009) gives a two period example of an asset
which is used as collateral in two different actively traded contract.

The paper is organized as follows. Section 2 presents the general model of
endogenous leverage. Section 3 characterizes the equilibrium properties of asset
prices and leverage in each project considered as a separate economy. Section
4 considers the two projects as part of the same economy and studies the full
equilibrium, which includes the project choice.

2 A General Equilibrium Model of Endoge-
nous Leverage

2.1 Time and uncertainty

The model is a finite-horizon general equilibrium model, with time t = 0, · · · , T .
Uncertainty is represented by a tree of date-events or states s ∈ S, including
a root s = 0. Each state s #= 0 has an immediate predecessor s∗, and each
non-terminal node s ∈ S\ST has a set S(s) of immediate successors. Each
successor τ ∈ S(s) is reached from s via a branch σ ∈ B(s); we write τ = sσ.
We denote the time of s by the number of nodes t(s) on the path from 0 to s∗.

2.2 Financial contracts and collateral

A financial contract (A, C) consists of both a promise, A, and collateral backing
it, C. Collateral consists of durable goods, which will be called assets. The
lender has the right to seize as much of the collateral as will make him whole
once the loan comes due, but no more.
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Suppose there is a single storable consumption good c and k = 1, ..., K assets
which pay dividends dk

s in each state s. We take the consumption good as
numeraire and denote the price of asset k in each state as pk

s . We will focus
on one-period non-contingent contracts. Contract jk

s is of the form (j · 1̃s, 1k),
where 1̃s ∈ RS(s) stands for the vector of ones with dimension equal the number
of successors of s and 1k stands for one unit of asset k. Hence, contract jk

s

promises j units of consumption good in each successor state of s and the
promise is backed by one unit of asset k. Contract jk

s ∈ Jk
s where Jk

s is the set
of all contracts at state s that use as collateral one unit of asset k. Finally,
Js =

⋃
k Jk

s and J =
⋃

s∈S\ST
Js.

The price of contract jk
s in state s is πjk

s . An investor can borrow πjk
s today

by selling contract jk
s in exchange for a promise of j tomorrow. Since the

maximum a borrower can lose is his collateral if he does not honor his promise,
the actual delivery of contract jk

s in states τ ∈ S(s) is min{j, pk
τ + dk

τ}. If the
collateral is big enough to avoid default, the price of contract jk

s is given by
πjk

s = j/(1 + rs), where rs is the riskless interest rate (and hence does not
depend on the asset used as collateral).

The margin requirement mjk
s associated to contract jk

s in state s is given by

mjk
s =

pk
s − πjk

s

pk
s

(1)

Leverage associated to contract jk
s in state s is the inverse of the margin, 1/mjk

s

and the Loan to Value (LTV) associated to contract jk
s in state s is 1 − mjk

s .

We define the asset margin requirement for asset k, mk
s , as the trade-value

weighted average of mjk
s across all contracts actively traded in equilibrium that

used asset k as collateral.3

2.3 Production.

Each investor h has an endowment of the consumption good and labor, denoted
by eh

s ∈ R+ and lhs ∈ R+ in each state s ∈ S. We assume that the consumption
good and labor are present at time 0,

∑
h∈H eh

0 > 0,
∑

h∈H lh0 > 0.

Every agent has direct access to two types of constant-returns-to-scale produc-
tion processes in the model: an inter-period and a within-period production.

3For a detailed description see Fostel-Geanakoplos (2010)
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The inter-period production is a simple way to model consumption good dura-
bility in the economy. A unit of consumption warehoused in state s yields one
unit of consumption in all successors states. There is no depreciation.

The second type of production, the within-period production, transforms la-
bor, l, into a portfolio of assets to be chosen by the investor in the set Zh

s =
{(z1

s , ..., z
K
s ) ∈ RK

+ : z1
s + ... + zK

s ≤ lhs}. Any investor can use his lhs units of
labor to produce any combination of assets.

2.4 Utility.

The von-Neumann-Morgenstern expected utility of each investor h ∈ H is
characterized by a Bernoully utility, uh, a discounting factor, δh and subjective
probabilities, qh. We assume that the Bernoulli utility function for consumption
in each state s ∈ S, uh : R+ → R, is differentiable, concave, and monotonic.
Agent h assigns subjective probability qh

s to the transition from s∗ to s; natu-
rally q0 = 1. Letting q̄h

s be the product of all qh
s′ along the path from 0 to s, we

have

Uh =
∑

s∈S

q̄h
s (δh)t(s)uh(cs) (2)

2.5 Budget Set.

Given asset and contract prices ((pk
s , π

jk
s ), s ∈ S, jk

s ∈ Jk
s ), each agent h ∈ H

decides what assets to produce, zs, consumption, cs, warehousing, ws, asset
holdings, ys, and contract sales (borrowing) and purchases (lending), ϕjk

s
, in

order to maximize utility (2) subject to the budget set defined by

Bh(p, π) = {(z, c, w, y, ϕ) ∈ RSK
+ × RS

+ × RS
+ × RSK

+ × (RJs)s∈S\ST
: ∀s

(cs + ws − eh
s − ws∗) +

∑
k pk

s(y
k
s − yk

s∗ − zk
s ) ≤∑

k yk
s∗d

k
s +

∑
jk
s ∈Js

ϕjk
s
πjk

s − ∑
jk
s∗∈Js∗ ϕjk

s∗
min(pk

s + dk
s , j);

zs ∈ Zh
s ;∑

jk
s ∈Js

max(0, ϕjk
s
) ≤ yk

s ,∀k}

In each state s, expenditures on consumption and warehousing minus endow-
ments and storage, plus total expenditures on assets minus asset holdings car-
ried over from the last period and asset output from the within-period tech-
nology, can be at most equal to total asset deliveries plus the money borrowed
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selling contracts, minus the payments due at s from contracts sold in the pre-
vious period.4 Within-period production is feasible. Finally, those agents who
borrow must hold the required collateral.

Let us emphasize two important things. First, notice that there is no sign con-
straint on ϕjk

s
: a positive (negative) ϕjk

s
indicates the agent is selling (buying)

contracts or borrowing (lending) πjk
s . Second, notice that we are assuming that

short selling of assets is not possible. This assumption, however, is not crucial
for the results in the paper as we discuss in Section 3.8.

2.6 Collateral equilibrium

A Collateral Equilibrium in this economy is a set of asset prices and contract
prices, production and consumption decisions, and financial decisions on as-
sets and contract holdings ((p, π), (zh, ch, wh, yh, ϕh)h∈H) ∈ (RK

+ ×RJs
+ )s∈S\ST

×
(RSK

+ × RS
+ × RS

+ × RSK
+ × (RJs)s∈S\ST

)H such that ∀s

(a)
∑

h∈H(ch
s + wh

s − eh
s − wh

s∗) =
∑

h∈H yh
s∗ds

(b)
∑

h∈H(yh
s − yh

s∗ − zh
s ) = 0

(c)
∑

h∈H ϕh
jk
s

= 0,∀jk
s ∈ Js

(d) (zh, ch, wh, yh, ϕh) ∈ Bh(p, π),∀h

(z, c, w, y, ϕ) ∈ Bh(p, π) ⇒ Uh(c) ≤ Uh(ch),∀h

Markets for consumption, assets and promises clear in equilibrium and agents
optimize their utility in their budget set. As shown by Geanakoplos and Zame
(1997), equilibrium in this model always exists under the assumptions we have
made so far.

3 News and Leverage.

3.1 A one-asset baseline example.

In this section we assume that there is only one asset. Throughout the paper
we consider assets and projects as synonyms.

Suppose there are three periods, t = 0, 1, 2. The single asset, Y , delivers only
at the final period. We assume that state 0 has two successors U , for up, and

4We take yh
0∗ = 0.
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D, for down, representing good and bad news respectively. Each of these states
s ∈ {U,D} has at most two successors sU and/or sD, at which the asset pays 1
or R < 1, respectively.5 Figure 4 depicts a tree consistent with this description.
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""
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--"

-!"
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Figure 4: Asset payoff description.

U can be interpreted as good news since we assume that

qh
UU > qh

DU ,∀h (3)

i.e., the probability of full payment after U is higher than after D.

In this example the set of states is S ⊆ {0, U, D, UU, UD, DU,DD}.

There is a continuum of heterogenous agents indexed by h ∈ H = [0, 1]. The
only source of heterogeneity is in subjective probabilities, qh

s . The higher the h,
the more optimistic the agent is about the future. Whenever h > h′, qh

U > qh′
U

and qh
sU > qh′

sU for s ∈ {U,D}, provided s has two successors.

Agents are risk neutral and do not discount the future. They start at t = 0
with an endowment of 1 unit of the consumption good and 1 unit of labor.

5R can be interpreted as a recovery value in case of asset default.
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More formally, Uh =
∑

s∈S q̄h
s cs, eh

0 = 1 and eh
s = 0, s #= 0, and lh0 = 1 and

lhs = 0, s #= 0.

In this baseline economy with one asset it is clear that in equilibrium every
investor will transform his labor into one unit of the asset at time 0.

A more subtle conclusion is the following result regarding leverage:

Proposition 1: In this economy, in which every node has at most two succes-
sors states, the only contract js traded in equilibrium is the one which promises
js = minτ∈S(s){pτ + dτ}.

Proof: See Geanakoplos (2003), Fostel-Geanakoplos (2010).

In every state, the only contract actively traded is the one promising the mini-
mal payoff in the future. Equilibrium default is endogenously ruled out and the
contract will trade at the riskless interest rate rs. All contracts will be priced
in equilibrium, but only one will be actively traded.

As discussed before, leverage is endogenously determined in equilibrium. In
particular, the proposition derives the conclusion that the only contract traded
in equilibrium is the one given by the Value at Risk equal zero rule assumed
by many other papers in the literature.

In equilibrium the risk-less interest rate must be zero: rs ≤ 0 because agents do
not discount the future, and the presence of the perfect warehousing technology
prevents rs < 0.

By proposition 1, buying 1 unit of Y on margin at state s means: selling a
promise of minτ∈S(s)[pτ + dτ ] using that unit of Y as collateral, and paying
(ps − minτ∈S(s)[pτ + dτ ]) in cash. The Loan to Value (LTV) of Y at s is,

LTVs =
minτ∈S(s)[pτ + dτ ]

ps
(4)

If s ∈ {U,D} has only one successor sU , then s must be good news and so
s = U . Moreover, every agent will agree on qh

sU = qh
UU = 1 and so in equilibrium

we must have pU = dUU = 1 and therefore LTVU = 1/1 = 100%. Analogously,
if s ∈ {U,D} has only one successor sD, then s = D, qh

sD = qh
DD = 1, pD =

dDD = R and therefore LTVU = R/R = 100%. If s ∈ {U,D} has two successors
then R < ps < 1 and hence LTVs = R/ps < 100%. Thus, when volatility post
s ∈ {U,D} is zero (because there is only one successor of s), LTVs = 100%,
whereas when volatility post s ∈ {U,D} is positive, LTVs < 100%.
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3.2 Equilibrium

Let us describe the system of equations that characterizes the equilibrium. Be-
cause of linear utilities and the continuity of utility in h and the connectedness
of the set of agents H = [0, 1], at each state s there will be a marginal buyer,
hs, who will be indifferent between buying or selling Y . All agents h > hs

will buy all they can afford of Y , i.e., they will sell all their endowment of the
consumption good and borrow to the max using Y as collateral. On the other
hand, agents h < hs will sell all their endowment of Y and lend to the more
optimistic investors. Equating expenditures and revenues provides us with the
first three equations in our system.

At s = 0 aggregate revenue from sales of the asset is given by p0.6 On the other
hand, aggregate expenditure on the asset is given by (1−h0)(1+p0)+pD. The
first term is total income (endowment plus revenues from asset sales) of buyers
h ∈ [h0, 1]. The second term is borrowing, which from proposition 1 is pD.
Equating we have

p0 = (1 − h0)(1 + p0) + pD (5)

Let s ∈ {U,D} have two successors sU and sD. Total revenue from asset sales
must equal total expenditure on asset purchases. This gives us

ps = (ps − pD) + (h0 − hs)(p0 + 1) + R (6)

The first term on the RHS is the income after debt repayment of those holding
the asset from period 0. The second term is the income of the new buyers
h ∈ [hs, h0], carried over from period 0. The last term is new borrowing.
Notice that because at s the original buyers h ∈ [h0, 1] can only borrow R,
which is less than the pD they owe, they will not be able to roll over all their
loans without selling some assets. Hence, hs < h0, i.e. the marginal buyer must
go down. If s has just one successor then it does not matter who the marginal
buyer is because they all agree and any one agent can buy all the assets since
leverage is 100%.

The next equations state that the price at s ∈ {U,D} is equal to the marginal
buyer’s valuation of the asset’s future payoff.

ps = qhs
sU1 + qhs

sDR (7)

6All asset endowments and production add to 1 and without loss of generality are put up for
sale even by those who buy it.
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The last equation equates the marginal utility to h0 of one dollar to the marginal
utility of using one dollar to purchase Y at s = 0:

qh0
U pU(qh0

UU/qhU
UU) + qh0

D pD(qh0
DU/qhD

DU)

p0
=

qh0
U 1(qh0

UU/qhU
UU) + qh0

D 1(qh0
DU/qhD

DU)

1
(8)

This last equation needs further explanation. Notice that payoffs on both sides
of the equation are weighted by the ratio (qh0

sU/qhs
sU) for s ∈ {U,D}. If agent h0

reaches state s ∈ {U,D} with a dollar he will want to leverage his wealth to
the max to purchase Y .7 This will result in a gain per dollar of

q
h0
sU (1−R)

ps−R =
q

h0
sU (1−R)

qhs
sU1+qhs

sDR−R
=

q
h0
sU

qhs
sU

Hence the marginal utility of a dollar at time 0 is given by the probability of
reaching U times the dollar times the marginal utility given above plus the
analogous expression for reaching D. This explains the RHS of equation (8).8

The LHS has exactly the same explanation once we realize that the best action
for the h0 at s ∈ {U,D} is to sell the asset and use the cash to buy it on margin.
If s has a unique successor, then (qh1

sU/qhs
sU) = 1 and the same equations applies.

We have a system of six equations, described by expressions (5)-(8), and six
unknowns: marginal buyers and asset prices at s = 0, U, D.

3.3 Projects

Suppose there are two different projects, variations of the baseline example
discussed above. These projects are exactly the same in terms of final asset
payoff distribution. To fix ideas, suppose that the probability of final good
output 1 is

1 − (1 − h)2 = qh
Uqh

UU + (1 − qh
U)qh

DU (9)

7Agents are perfectly rational and foward looking. There are other options at s = D, like
eating the good, storing it or buying Y unleveraged, but they are all dominated in equilibrium by
leveraging to the max.

8Another way of understanding the same is to notice that buying Y on margin at s is equivalent
to buying the Arrow security that pays only at up (since at down the net payoff is zero). The price
of this security is given by qhs

sU , the marginal buyer’s valuation. Hence, with a dollar, h0 can buy
1/qhs

sU units which are worth (qh0
sU/qhs

sU ), explaining the ratio.
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The only difference between the two projects is in the way information is re-
vealed in the intermediate period. More precisely, projects can differ in the
post-volatility induced by news in the intermediate period. By post-volatility
we mean the final payoff volatility conditioned on reaching a particular node
or state.

3.4 Pro-Cyclical Leverage.

There is only one project that gives rise to pro-cyclical leverage and we describe
it in figure 5.
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Figure 5: BV Project.

The probabilities in the tree satisfy equations (3) and (9). If state U is reached
in the second period, uncertainty is completely resolved since the asset pays for
sure 1 at the end. Leverage at U is 100%. However, if D is reached, uncertainty
remains. In fact, D is bad news, but of the sort that not only decreases the
expected asset payoff compared with U but also increases final payoff volatility.
This project represents the situation in which each piece of bad news is not
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very informative and induces high future volatility. We call it “Post-Bad News
Volatility” project, BV.9

We solve the system of equations described in section 3.2 to find the equilibrium
in this project. Table 1 shows equilibrium prices, marginal buyers and leverage
for R = .2. It is easy to check that this is indeed an equilibrium, i.e investors
are maximizing and markets clear.

Table 1: BV Equilibrium.

  
0 U D 

        

Price, ps 0.95 1.00 0.69 

        

Marginal Buyer, hs 0.87 1.00 0.62 

        

Leverage, LTVs 0.73 1.00 0.29 

The first observation is that the price of Y falls from 0 to D, from .95 to .69, a
fall of 27%. The marginal buyer at t = 0, h = .87, thinks at the beginning that
there is a probability of 1.69% of reaching the disaster state DD, but once D
is reached this probability rises to 13%. This would imply a fall in the price
of only 9%. So why is the crash of 27% so much bigger than the bad news of
9%? There are three reasons for the crash.

First, as we just saw, is the presence of bad news. The second reason is that
after bad news, the leveraged investors lose all their wealth: the value of the
asset at D is exactly equal to their debt, so they go bankrupt. Therefore even
the topmost buyer at D is below the marginal buyer at 0. Third, with the
arrival of bad news, leverage goes down (margins go up), from LTV0 = .73 to
LTVD = .3, so more buyers are needed at D than at 0. Thus the marginal
buyer at D is far below the marginal buyer at 0: hD = .62 < .87. The asset

9This is the example in Geanakoplos (2003, 2009).
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falls so far in price at D because every agent values it less and because the
marginal buyer is so much lower.

The main result of this exercise is that the BV project endogenously generates
pro-cyclical leverage. With bad news, leverage goes down and with good news
leverage goes up. Why is this? As mentioned before, bad news not only
decreases expected asset payoff in the future, but increases future volatility
as well and good news reduces the volatility. By equation (4) an increase
in volatility increases endogenous margin requirements and lowers leverage in
equilibrium. This phenomenon was called the Leverage Cycle by Geanakoplos
(2003) and extended further to many assets and adverse selection by Fostel-
Geanakoplos (2008).

3.5 Counter-Cyclical Leverage.

Every other project gives rise to counter-cyclical leverage because pU > pD

and hence LTVU = R/pU < R/pD = LTVD. We concentrate on the simplest
example, which we call “Post-Good News Volatility” project, GV, defined by
the following tree depicted in figure 6.
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Figure 6: GV Project.
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These probabilities also satisfy equations (3) and (9), that is, every agent h
thinks the terminal probabilities of 1 and R are the same for GV as for BV. If
D is reached, all uncertainty is resolved given that the asset pays for sure the
low dividend R, and leverage is 100%. However, if U is reached uncertainty
remains and leverage falls: investors can still borrow R but the price is higher.
This GV project represents the situation in which each piece of good news, as
opposed to bad news as in the BV project, is not very informative and induces
high future volatility.

We solve the system of equations described in section 3.2 to find the equilibrium
in this project. Table 2 shows equilibrium prices, marginal buyers and leverage
for R = .2. It is easy to check that this is indeed an equilibrium, i.e investors
are maximizing and markets clear.

Table 2: GV Equilibrium.

  0 U D 

        

Price, ps 0.89 0.94 0.20 

        

Marginal Buyer, hs 0.63 0.63 0.63 

        

Leverage, LTVs 0.22 0.21 1.00 

        

In equilibrium, the asset price collapses from .89 all the way to .2 given the
imminent nature of the disaster once D has been reached. It goes up at U to
.94. The marginal buyer at t = 0 and t = U is the same, so optimists roll-over
their debt once they reach U .

3.6 Why BV is so different from GV?

The main findings from Sections 3.4 and 3.5 are the following:
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(a) The initial price is higher in the BV project (.95) than in the GV project
(.89).

(b) Initial leverage is higher in the BV project (LTV = .73) than in the GV
project (LTV = .22).

(c) Leverage is pro-cyclical in the BV project and counter-cyclical in the GV
project.

Why is this the case?

First, the reason why the BV project is more valuable than the GV project
is because it can be leveraged more at the beginning. A higher borrowing
capacity implies that all the assets in the economy can be afforded by fewer
investors, so that the marginal buyer is more optimistic. This naturally raises
the project’s price.

Second, BV can be leveraged more at time zero due to the type of bad news.
By proposition 1 the maximum agents can promise is the worse case scenario
in the immediate future, i.e, the price of the project after bad news. But in
the BV project the price does not fall as much precisely because bad news is
less informative and volatile. By contrast, bad news in the GV project is very
informative, lowering the promise in equilibrium.

Third, as explained before, the cyclical properties derived in each project are a
direct consequence of the difference in volatility between the projects. In BV
bad news induces future volatility, lowering leverage, while in GV good news
induces volatility, lowering leverage.

3.7 BV vs GV: long run analysis.

Having completely characterized the equilibrium in the two projects, considered
as separate economies, we wonder if these results hold when we consider longer
horizons. With this in mind, we extend our previous examples for an N horizon
economy. We maintain the same terminal probabilities for outcomes 1 and R,
independent of N , with constant probabilities of up throughout each tree. The
BV and GV projects are described in figure 7. In the BV project, as before, the
imminent occurrence of the bad final outcome R is pushed until the very end,
and bad news comes in small drops with an associated higher future volatility.
On the other hand, in the GV project, good news, instead of bad news, has
the property of revealing little information and inducing high volatility. We
calculate the equilibrium for each project separately. The complete system
of equations that characterizes the equilibrium in each project is described in
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detailed in Appendix 1. They are the natural (though not obvious) extension
of the three period case. The prices and leverage are noted at some of the
nodes for N = 10 in figure 7, complete equilibrium information is presented in
Appendix 1.

…………. 

1 1 1 

R
p=.9875 

LTV=.9827 

…………. 

R R R

1 

t=0 t=1 t=9 t=10 

BV 

GV 

p=.9768 

LTV=.9702 

p=.3352 

LTV=.5967 

p=.8928 

LTV=.2240 

p=.9112 

LTV=.2195 

p=.9896 

LTV=.2021 

Figure 7: Prices and leverage for BV and GV projects, N=10 periods.

Figure 7 shows that the results of previous sections hold even in longer horizon
economies. The price of the BV project is higher than the GV project and
leverage is pro-cyclical in the BV project and counter-cyclical in the GV project.
In fact, the longer the horizon the bigger the gap in initial prices.

3.8 Arrow-Debreu Equilibrium.

In order to help understand why BV is more valuable than GV we also calculate
the Arrow-Debreu equilibrium for each project. It is evident that every agent
will wait until the last period to consume. In each case there are three terminal
states. The difference is that in the BV project the good event (where the
dividend is 1) is partitioned into two states, UU and DU , whereas in the GV
project the bad event (in which the dividend is .2) is partitioned into two states,
UD and DD. See figure 8.
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Figure 8: Projects and payoff event partitions.

To compute the Arrow-Debreu equilibrium, we guess that agents above h1 buy
only the Arrow security for state 1, agents h1 > h > h2 will buy only the Arrow
security 2 and agents below h2 will buy the Arrow security 3. Endowments in
each state are the cash plus the asset dividends in each state.

As we can see in table 3 the price of the BV project is .55, higher than the
price of the GV project, .48. Asset prices are given by the sum of the Arrow
prices weighted by the asset dividend in each state.10 The price of the good
event is given by the sum of the first two Arrow prices, a total of .4332 in the
BV project. In contrast, the price of the good event is given only by the first
arrow price in the GV project, .3598. Of course, this difference makes the asset
price higher in the BV project.

Why is the Arrow price of the good event worth more in the BV economy than
in the GV economy, even though every agent attaches the same probability?
Due to heterogenous priors, a finer partition of the good event allows agents
to bet, increasing the Arrow price of the good event.

10Note that the sum of the Arrow prices is equal to 1 due to the presence of an inventory
technology with zero profit.
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Table 3: Arrow-Debreu equilibrium for BV and GB projects.

  BV  Project GV Project 

      

p1 0.2848 0.3598 

p2 0.1484 0.173 

p3 0.5668 0.4672 

      

Asset Price 0.5465 0.4878 

      

h1 0.4789 0.2624 

h2 0.2074 0.1915 

      

From the Arrow-Debreu equilibria we conclude that the gap in initial asset
prices between BV and GV obtained in sections 3.4 and 3.5 does not rely on
market incompleteness or the assumed short-selling constraints. The Arrow-
Debreu equilibrium helps us understand why in collateral equilibrium leverage
makes BV more valuable than GV. In the BV collateral economy, one can bet
on a payoff of 1 by in effect buying the UU Arrow security via leverage at
s = 0, or by warehousing at s = 0 and then leveraging at s = D, thus in effect
buying a combination of UU and DU Arrow securities. In the GV collateral
economy, one can only bet on the payoff of 1 via the UU Arrow security.

Though the gap in price between the complete markets BV and GV economies
is just as big as in the collateral BV and GV economies, the absolute price
level of the complete market economies is much lower. In the complete market
economies pessimists can bet on the bad .2 outcome, whereas in the collateral
equilibrium they cannot because of the short sale constraint.

4 Volatile Bad News or Volatile Good News?

The main question we want to answer in this section is: if agents have the
opportunity to use their labor to produce either of the two type of projects,
BV and GV, which project would they choose in equilibrium?
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It is very tempting to jump to the conclusion that all agents will choose the BV
project since it has a higher price at the beginning in the separate economies.
Unfortunately this answer is incorrect. Further inspection reveals that once
everyone else has chosen the BV project, it becomes profitable for any one
agent to produce the GV project. So we need to appeal to the full force of the
model in section 2 to solve the problem.

Suppose there are two assets, X and Y , with independent payoffs. Asset X
corresponds to the BV project and asset Y to the GV project. The joint tree of
payoffs is described in figure 9. Note that state s = 0 now has four successors.
For example, the state (U,U) in the intermediate period corresponds to the
situation in which X (BV) and Y (GV) receive good news. The probability of

such event for agent h is h
√

1 − (1 − h)2.

(U,U) 

0 

(UU,UU)=(1, 1) 

(UU,UD)=(1, R) 

(U,D) 

(D,U) 

(D,D) 

(DU,UU)=(1, 1) 

(DU,UD)=(1, R) 

(UU,DD)=(1, R) 

(DD,DU)=(R, 1) 

(DD,DD)=(R, R) 

(DU,DD)=(1, R) 

(DD,DD)=(R, R) 

(.96, .96) 

(1, .99) 

(1, .2) 

(.75, .93) 

(.69, .2) 

Figure 9: Joint BV and GV economy

Agents are as in the baseline example in section 3. They can transform their
unit of labor into a portfolio of different projects at t = 0. The within-period
technology is given by Zh

0 = {(zX
0 , zY

0 ) ∈ R2
+ : zX

0 + zY
0 = 1}, where zX

0 is the
share of X (BV project) and zY

0 the share of Y (GV project).

Figure 9 shows the equilibrium prices at each node for both assets, BV and
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GV, respectively for R = .2. At equilibrium, all agents choose to produce the
same mix zX

0 = .7 and zY
0 = .3. But how did we find equilibrium?

4.1 Equilibrium Leverage.

Before moving on to solve the model, let us go back to the question of endoge-
nous leverage. Proposition 1 holds for the intermediate states s ∈ {UU, UD, DU, DD},
since for each asset there are at most two distinct successor payoff values.
Hence, the only contract traded in all intermediate states is the one that pre-
vents default in equilibrium as in section 3.

However, the situation is different at time 0 since there are four successor states
in S(0) with three distinct successor payoff values for each asset11, and therefore
it is not possible to appeal to the result anymore. In fact, the following holds

Proposition 2: In this economy, two contracts are traded in equilibrium at
time 0 for each asset: the one which promises jk

s = pk
DD and the one that

promises jk
s = pk

DU .

Proof: Fostel-Geanakoplos (2010).

For each asset two types of contracts will be traded: one that promises the
worst-case scenario and another that promises the middle-case scenario. While
the first one is risk-less as before, the second one is not since it defaults in the
worst state. In this model, not only is there default in equilibrium, but also
the same asset is traded simultaneously with different margin requirements by
different investors. Araujo et.al. (2009) and Fostel-Geanakoplos (2010) show
this in a two period model. We show in the following section that this is an
equilibrium also in a dynamic setting for the first time. The dynamic setting
is more difficult because the payoffs of the risky bonds are endogenous.

4.2 Procedure to find the equilibrium

4.2.1 Variables

Finding an equilibrium in this economy seems a daunting task. The first thing
we will do is to find an equilibrium for any fixed zX

0 , zY
0 = 1 − zX

0 . Then

11X’s price is 1 at UU and UD and Y ’s price is R at UD and DD.
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using the fact that the two asset prices at the beginning ought to be equal in
a genuine equilibrium, we will find the zX

0 that precisely accomplishes that.12

Notice that some prices are obvious, X’s price equals 1 for sure at UU and
UD, whereas Y ’s price is R at UD and DD. It is also clear that at UD all
uncertainty is resolved and there is no more trade.

Buying an asset on margin using a financial contract defines a down-payment
at time 0 and a profile of net payoffs in the future. In this sense, we can think
of nine securities in total at time 0, six risky and three risk-less: i) buying X
on margin using the risky bond (the one that promises pX

DU), ii) buying X on
margin using the risk-less bond (which promises pX

DD), iii) buying Y on margin
using the risky bond (the one that promises pY

DU), iv) buying Y on margin
using the risk-less bond (which promises pY

UD = pY
DD), v) the risky bond that

promises pX
DU , vi) the risky bond that promises pY

DU , vii) the risk-less bond
that promises pX

DD, viii) the risk-less bond that promises pY
UD = pY

DD and ix)
warehousing.

In equilibrium the riskless interest rate will be zero, as before, hence all the
riskless bonds will be priced equal to their respective promise. In addition to
zX
0 and zY

0 we still need to find the value of 20 variables:

• Asset prices: pX
0 , pY

0 , pY
UU , pX

DU , pY
DU , pX

DD.

• Risky bond prices at s = 0: πX , πY , where πk is the price of the bond
that promises pk

DU in all successors states in the future.

• Asset marginal buyers: hX
M , hY

M , hX
m, hY

m, hY
UU , hX

DU , hY
DU , hX

DD, where hk
M(hk

m)
corresponds to the marginal buyer of the k asset leveraging with the risky
(risk-less) bond.

• Risky bond marginal buyers: hBX , hBY .

• Asset purchases at s = 0 leveraging with the risky bond: yX , yY .

4.2.2 Regimes

Next, we will guess a regime, consisting of a ranking of the marginal buyers
and a description of what each agent buys in each node, in order to be able
to define a system of equations. Once we get a solution we need to check:
first, that pX

DU > pX
DD, so that prices are consistent with our guess about which

bonds are risky and riskless on X, second, that pY
UU > pY

DU , so that prices are
consistent with with our guess about which bonds are risky and riskless on Y ,

12Hopefully if we start with a good guess of zX
0 near the true value we will be able to shift zX

0

until prices are equal without changing the equilibrium regime by continuity.
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and finally, that each regime is genuine, i.e. all agents are maximizing with
those choices.

We next describe the regimes at each node. Figure 10 shows a graphical illus-
tration of them and of the equilibrium values of all marginal buyers.

s=0 s=UU s=DU s=DD 

hY
M

 

hY 

hX 

hY 

hX 

.995 

.933 

.915 

.869 

.782 

.566 

.889 

.723 

.610 
.614 

hX
M

 

hX
m

 

hY
m

 

hBY 

hBX 

Figure 10: Equilibrium Regimes.

• At s = 0

h > hY
M buy Y , sell X and promise pY

DU . hY
M > h > hX

M buy X, sell
Y and promise pX

DU . hX
M > h > hX

m buy X, sell Y and promise pX
DD.

hX
m > h > hY

m buy Y , sell X and promise R. hY
m > h > hBY sell both

assets and buy the BY bond (so lend in the risky market collateralized
by Y ). hBY > h > hBX sell all assets and buy the BX bond (so lend in
the risky market collateralized by X). Finally, h < hBX sell everything,
hold risk-less securities (so lend in the risk-less markets).

• At s = UU

h > hY
UU buy Y and promise R. Below lend and buy X. hX

m > hY
UU > hY

m.

• At s = DU
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All h > hX
M go bankrupt since they promise exactly what they own. h >

hX
DU buy X and promise R. hX

DU > h > hY
DU buy Y and promise R. All

h < hY
DU lend. Finally, hBY > hX

DU > hY
DU > hBX .

• At s = DD

All h > hY
m are out of business either because they default or they have

no money left. h > hX
DD buy X and promise R. h < hX

DD lend. Finally,
hBY > hX

DD > hBX .

The system of equations is conceptually an extension of the system in section
3. In every state supply equals demand for all the securities. Also marginal
buyers are determined by an indifference condition between investing in two
different securities. As before, all marginal utility of a dollar invested in any
security is weighted by the marginal utility of future actions in each state. The
system is presented in Appendix 2.

4.3 Agents prefer the BV project.

All the values listed in figures 9 and 10 are consistent with the assumed regimes
and prices as discussed in section 4.2.2. It turns out also that this equilibrium
is genuine in the sense that all agents’ decisions are optimal.13

The most important thing to observe is that zX
0 = .7, this is, all agents choose

to invest their labor in a portfolio with a 70% share of the BV project. Or
equivalently, 70% of the economy invests in BV projects when given the oppor-
tunity to choose. The consequence of this is that, since we assumed that the
two projects were independent, 70% of the time when bad news occurs they
will be of the volatile type, and we will observe pro-cyclical leverage.

4.4 Leverage Reconsidered

When the asset could take on at most two immediate successor values, equi-
librium determines a unique actively traded promise and hence leverage. With
three or more successor values, we cannot expect a simple promise. But equi-
librium still determines the average leverage used to buy each asset.

13The risky bond prices at date 0 are πX = .7521 on a promise of .7548, corresponding to an
interest rate of .36% and πY = .9156 on a promise of .9366, corresponding to an interest rate of
2.3%. The most leveraged asset purchases at date 0 are yX = .520 and yY = .184. The verification
that each agent is indeed maximizing is available upon request.
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Equilibrium leverage is presented in table 4. There are eight securities in total,
six risky securities and two risk-less securities (without considering warehous-
ing). Columns 2 and 3 show the holdings and value of such holdings for each
of the securities. Most importantly, column 4 shows the LTV of each of the
four traded contracts. As was expected, LTV is higher for the risky contracts
(they have a higher promise) for both assets. Finally, column 5 shows the LTV
for each asset. Whereas the LTV for BV is .76, it is only .6 for GV. As defined
in section 2, asset LTV is a weighted average. For example the LTV for BV
is obtained from the total amount borrowed using all contracts, .423 + .091
divided by the total value of collateral, .966 × .695.

As in section 3, BV can be leveraged more than the GV. Second, also as before,
leverage in BV is pro-cyclical while it is counter-cyclical in GV. Third, notice
that even though both projects have the same initial price in equilibrium, for
both assets the price is higher than in section 3 (.966 versus .95 for BV and
.89 for GV). The main reason for this difference is that now with a different
tree, more contracts are traded in equilibrium, not only the risk-less one. Both
assets can be leveraged more now using risky contracts which promise more
(and hence default as well). Whereas there is not so much difference between
the minimum promise and the medium promise for BV (.691 and .754) this
difference is significant for GV (.2 and .936). For a precise discussion between
leverage and asset prices see FG (2010).

Table 4: Contract and Asset Leverage.

  Leverage at s=0       

            

Security Holdings Holdings Value Contract LTV Asset Asset LTV 

            

            

Y lev Medium 0.186 0.180 0.947 X (SBN) 0.766 

X lev Medium 0.563 0.544 0.778     

X lev Min 0.132 0.128 0.715 Y (CBN) 0.660 

Y lev Min 0.119 0.115 0.207     

Y risky bond 0.186 0.171       

X risky bond 0.563 0.423       

Y riskless bond 0.119 0.024       

X riskless bond 0.132 0.091       

            

            

            

  Leverage at intermediate nodes     

            

  UU UD DU DD   

            

X (SBN) 1.000 1.000 0.184 0.201   

            

Y (CBN) 0.061 1.000 0.065 1.000   

            

So, why did agents choose BV more? The simple reason is that BV can be
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leveraged more at the beginning. So the most optimistic agents will choose BV.
However, as soon as less optimistic people opt for volatile bad news projects, its
price will start to decline and the GV project will start to become attractive to
other investors. This process will continue until prices are equal in equilibrium.

4.5 Volatility Smiles

Our main result also suggests an explanation for the observed “Volatility Smile”
in stock options. This refers to the fact that implied volatility has a negative
relationship with the strike price, so volatility decreases as the strike price
increases. Hence, bad news comes (or are assumed to come) with high volatility.
This effect is even larger when considered on indexes as S&P500.

The pattern has existed for equities only after the stock market crash of 1987.
This has led some economist like Bates (2000) and Rubinstein (1995) to explain
volatilites smiles by “crashophobia”. Traders are concerned about the possi-
bility of another crash and they price options accordingly. Our result provides
a completely different explanation. Our agents are perfectly rational, they en-
dogenously choose projects associated with volatile bad news since they can
leverage more with them.
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6 Appendix

6.1 Appendix 1: BV and GV Projects: Long Run Anal-
ysis.

Notice that since the final probability of disaster is constant (regardless of N),
the probability of bad news in period k is given by (1 − hk)2/k.

• pN+1 = R

• pN = (1 − (1 − hN)2/N) + (1 − hN)2/NR

• hN−1 = hN (1+pN )
1+pN+1

• pN−1 =
(1−(1−hN−1)2/N )+(1−hN−1)2/N (1−(1−hN−1)2/N )

(1−(1−hN )2/N )
pN

(1−(1−hN−1)2/N )+(1−hN−1)2/N (1−(1−hN−1)2/N )

(1−(1−hN )2/N )

• hN−2 = hN−1(1+pN−1)
1+pN

...

• p1 =
(1−(1−h1)2/N )+(1−h1)2/N (1−(1−h1)2/N )

(1−(1−h2)2/N )
p2

(1−(1−h1)2/N )+(1−h1)2/N (1−(1−h1)2/N )

(1−(1−h2)2/N )

• h0 = h1(1+p1)
1+p2

= 1

We use the fact that the marginal buyer rollover his debt at every node to
build up the system and then verify that the guess is correct. Notice that the
probability of good news in period k is given by (1 − (1 − hk)2)1/N .

• p1 = ((1 − (1 − hk)2)1/N)N + (1 − ((1 − (1 − hk)2)1/N)N)R

• p1 = (1−h1)+R
h1

...

• pk = ((1 − (1 − hk)2)1/N)N−k + (1 − ((1 − (1 − hk)2)1/N)N−k)R

Tables 5 and 6 present all the equilibrium values.
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Table 5: BV equilibrium N=10.

            

            

Period Mrg buyer Price bad state Price good state 
Leverage bad 

state 
Leverage good 

state 

            

0 0.9914 0.9875   0.9827   

1 0.9768 0.9704 1.0000 0.9702 1.0000 

2 0.9547 0.9415 1.0000 0.9534 1.0000 

3 0.9244 0.8976 1.0000 0.9327 1.0000 

4 0.8856 0.8372 1.0000 0.9081 1.0000 

5 0.8394 0.7603 1.0000 0.8791 1.0000 

6 0.7870 0.6684 1.0000 0.8441 1.0000 

7 0.7301 0.5642 1.0000 0.7995 1.0000 

8 0.6718 0.4511 1.0000 0.7431 1.0000 

9 0.6038 0.3352 1.0000 0.5967 1.0000 

10   0.2000 1.0000      

            

            

Table 6: GV equilibrium N=10.

            

            

Period Mrg buyer Price good state Price bad state 
Leverage good 

state 
Leverage bad 

state 

            

0 0.6340 0.8928   0.2240   

1 0.6340 0.9112 0.2000 0.2195 1.0000 

2 0.6340 0.9205 0.2000 0.2173 1.0000 

3 0.6340 0.9300 0.2000 0.2151 1.0000 

4 0.6340 0.9396 0.2000 0.2129 1.0000 

5 0.6340 0.9494 0.2000 0.2107 1.0000 

6 0.6340 0.9592 0.2000 0.2085 1.0000 

7 0.6340 0.9692 0.2000 0.2064 1.0000 

8 0.6340 0.9793 0.2000 0.2042 1.0000 

9 0.6340 0.9896 0.2000 0.2021  1.0000 

10   1.0000 0.2000      

            

            

32



6.2 Appendix 2: System of Equations for the joint-project
economy in section 4.

Notation: qh
s is the probability of state s by buyer h.

• yY =
(1−hY

M )+αpX
1 (1−hY

M )+(1−α)pY
1 (1−hY

M )

pY
1 −πY

• yX =
(hY

M−hX
M )+(1−α)pY

1 (hY
M−hX

M )+αpX
1 (hY

M−hX
M )

pX
1 −πX

• (αhX
m + α(1 − hY

M) − yX) =
(hX

M−hX
m)+(1−α)pY

1 (hX
M−hX

m)+αpX
1 (hX

M−hX
m)

pX
1 −pX

DD

• ((1−α)hY
m +(1−α)(hY

M −hX
m)−yY ) = (hX

m−hY
m)+αpX

1 (hX
m−hY

m)+(1−α)pY
1 (hX

m−hY
m)

pY
1 −R

• ((1 − α)(1 − hY
M) + yY ) = (hY

m−hBY )(1+αpX
1 +(1−α)pY

1 )
πY

• (α(hY
M − hX

M) + yX) = (hBY −hBX)(1+αpX
1 +(1−α)pY

1 )
πX

• q
hY

M
UU (pY

UU−pY
DU )

pY
1 −πY

√
1−(1−hY

M )2(1−R)

pY
UU−R

=
q

hY
M

UU (1−pX
DU )

pX
1 −πX

√
1−(1−hY

M )2(1−R)

pY
UU−R

+
q

hY
M

UD (1−pX
DU )

pX
1 −πX

• q
hX

M
UU (1−pX

DU )

pX
1 −πX

√
1−(1−hX

M )2(1−R)

pY
UU−R

+
q

hX
M

UD (1−pX
DU )

pX
1 −πX =

=
q

hX
M

UU (1−pX
DD)

pX
1 −pX

DD

√
1−(1−hX

M )2(1−R)

pY
UU−R

+
q

hX
M

UD (1−pX
DD)

pX
1 −pX

DD
+

q
hX

M
DU (pX

DU−pX
DD)

pX
1 −pX

DD

hX
M (1−R)

pX
DU−R

• q
hX

m
UU (1−pX

DD)

pX
1 −pX

DD

√
1−(1−hX

m)2(1−R)

pY
UU−R

+
q

hX
m

UD(1−pX
DD)

pX
1 −pX

DD
+

q
hX

m
DU (pX

DU−pX
DD)

pX
1 −pX

DD

hX
m(1−R)
pX

DU−R
=

=
q

hX
m

UU (pY
UU−R)

pY
1 −R

√
1−(1−hX

m)2(1−R)

pY
UU−R

+
q

hX
m

DU (pY
DU−R)

pY
1 −R

hX
m(1−R)
pX

DU−R

• q
hY

m
UU (pY

UU−R)

pY
1 −R

+
q

hY
m

DU (pY
DU−R)

pY
1 −R

hY
m(1−R)
pX

DU−R
=

=
q

hY
m

UU pY
DU+q

hY
m

UDR+q
hY

m
DUpY

DU
hY

m(1−R)

pX
DU

−R
+q

hY
m

DDR
hY

m(1−R)

pX
DD

−R

πY

•
qhBY

UU pY
DU+qhBY

UD R+qhBY

DU pY
DU

hBY (1−R)

pX
DU

−R
+qhBY

DD R hBY (1−R)

pX
DD

−R

πY =

=
qhBY

UU pX
DU+qhBY

UD pX
DU+qhBY

DU pX
DU

hBY (1−R)

pX
DU

−R
+qhBY

DD pX
DD

hBY (1−R)

pX
DD

−R

πX

• qhBX

UU pX
DU+qhBX

UD pX
DU+qhBX

DU pX
DU+qhBX

DD pX
DD

πX = 1

•
√

1−(1−hY
UU )2(1−R)

pY
UU−R

= 1

• (1 − α) =
(pY

UU−pY
DU )((1−α)(1−hY

M )+yY )+(1−pX
DU )(α(hY

M−hX
M )+yX)

pY
UU−R

+

(1−pX
DD)(α(hX

M−hX
m)+(αhX

m+α(1−hY
M )−yX))(hX

M−hY
UU )/(hX

M−hX
m)

pY
UU−R

• hX
DU (1−R)

pX
DU−R

=
√

1−(1−hX
DU )2(1−R)

pY
DU−R

33



•
√

1−(1−hY
DU )2(1−R)

pY
DU−R

= 1

• α =
(pX

DU−pX
DD)(α(hX

M−hX
m)+(αhX

m+α(1−hY
M )−yX))+(pY

DU−R)((1−α)(hX
m−hY

m)

pX
DU−R

+

((1−α)hY
m+(1−α)(hY

M−hX
m)−yY ))

pX
DU−R

+

pY
DU ((1−α)(1−hY

M )+yY )(hBY −hX
DU )/(hBY −hBX)

pX
DU−R

• (1 − α) =
(hX

DU−hY
DU )/(hBY −hBX)pY

DU ((1−α)(1−hY
M )+yY )

pY
DU−R

• hX
DD(1−R)

pX
DD−R

= 1

• α =
R((1−k=α)(1−hY

M )+yY )+
hBY −hX

DD
hBY −hBX pX

DD(α(hY
M−hX

M )+yX)

pX
DD−R
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