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Abstract

When firm-level productivity is not assumed to be Pareto distributed, new trade
models predict that micro-data such as sales distributions determine the aggregate
trade elasticity. In this paper, we document novel features of export sales distributions
across destination markets. Notably there is large variation in dispersion and degrees
of asymmetry. To capture these features of the export sales data we introduce a novel
distribution: the Exponentially Modified Gaussian (EMG) distribution. We show that
the EMG distribution fits sales data far better than either of the often assumed log-
Normal or Pareto distributions and we provide quantitative evidence that these less
accurate distributions can generate highly biased trade elasticities.

1 Introduction

The aggregate elasticity of trade with respect to variable trade costs is an important com-

ponent in measuring the welfare gains from trade. In the context of new trade theories

with firm-level heterogeneity (most notably Melitz (2003)), this trade elasticity is intimately

linked to the distributional assumption made with respect to the fundamental sources of firm

heterogeneity, as shown by Melitz and Redding (2015). Accordingly, one way to estimate a

trade elasticity is by fitting a model-implied parametric distribution of export sales to the

data. When making such an inference about the aggregate trade elasticity from micro data,

it is crucial that the theoretical distribution is able to accurately characterize the sales data.

∗The authors thank Mina Kim, Illenin Kondo, Logan Lewis, Toshi Mukoyama and seminar participants
at the Census Bureau and the GWU Trade Study Group for insightful comments and discussions. The views
expressed herein are those of the authors and not necessarily those of the Bureau of Labor Statistics or the US
Department of Labor. The work was supported in part by the facilities and staff of the George Washington
University Colonial One High Performance Computing Initiative. First version: November 2014.
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In this paper, first we document new features of log-sales distributions of exports that

are inconsistent with the salient features of the two most frequently utilized distributional

assumptions in workhorse trade models: the Normal and Exponential distributions. In the

context of Brazilian export data for the period between 1990 and 2001 we document a

number of novel striking features of log-sales distributions across export destinations. First,

in contrast to a Normal distribution, the majority of the log-sales distributions are not

symmetric. Not only do statistical tests reject the assumption of Normality in 42 percent of

log-sales distributions across destinations, but nearly 75 percent of distributions are positively

skewed. Second, in contrast to an Exponential distribution which has constant skewness of 2,

the skewness of log-sales in the Brazilian data varies between -1.08 and 1.29 with an average

value of 0.03 being far below 2. Finally, the dispersion of log-sales varies substantially across

destinations. For example, if across all destinations the 25th percentile firm always made

100 dollars in sales, then the size of the 75th percentile firm would vary between 450 dollars

and 8,000 dollars across destinations (by a factor of 18).

In order to capture the prevalent asymmetry in the distribution of log-sales we propose

a novel distribution: the Exponentially Modified Gaussian (EMG) distribution. An EMG

distribution is constructed as a convolution of two independent distributions: a Normal

and an Exponential. As such, an EMG distribution exhibits a fat, Pareto-like right-tail

and a Normal-like left-tail. Hence, the EMG distribution has the potential to capture, in

a parsimonious manner, the asymmetric nature of the empirical log-sales distributions as

well as generate very small sales in the left tail. We further demonstrate that the novel

EMG distribution arises from models of learning such as Timoshenko (2015), where firms

draw their productivity from a Pareto distribution and a demand shock from a Normal

distribution.

We next demonstrate that an EMG distribution provides a superior fit to the log-sales

data. We fit an EMG distribution to the empirical log-sales distributions across export

destinations and compare the fit of the EMG to the fit of Normal and Exponential distri-

butions. Across various goodness of fit measures, the EMG distribution provides a superior

fit in a large majority of destinations. Hence, models that assume an EMG distribution will

match the micro-data better than models that incorporate either a Normal or an Exponential

distribution alone.

Distributional assumptions have important implications for the measured magnitudes of

the aggregate trade elasticity. In the context of the Melitz (2003) model with monopolistic

competition, heterogeneous firms, and CES preferences, the trade elasticity can be decom-

posed into the intensive and the extensive margin components. The extensive margin arises

from the entry and exit of new firms into an export destination, while the intensive margin
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arises from changes in sales of existing firms. We further demonstrate that the level of trade

elasticity depends on the elasticity of substitution across varieties. The relative contribution

of the intensive margin to that level is always unity, while the relative contribution of the

extensive margin depends on the entire shape of the log-sales distribution and the size of an

average firm relative to the smallest firm.

Accordingly, we use the fitted distributions to evaluate the contribution of the extensive

and intensive margins to the aggregate trade elasticity in the context of the Melitz (2003)

model. When a log-sales distribution deviates from a Normal distribution and is more

accurately characterized by an EMG distribution, the Normal distribution underestimates

the extensive margin elasticity by a factor of 10 to 1,000. The more fat-tailed is the log-sales

distribution, the more skewed is the fitted EMG distribution, and the larger is the extent of

the bias generated by fitting a Normal distribution.

Finally we point out an important issue in estimating extensive margin elasticities using

truncated export data. It is not uncommon in collecting trade and customs data to omit

any firm-level exports below a given threshold. This threshold can vary from as low as

1,000 dollars to as high as 200,000 dollars per firm-destination sales. While our data is not

truncated, we create a counterfactual dataset that is, and study the effect of truncation on

measured aggregate trade elasticities. We show that the extensive margin elasticities implied

by the truncated data are overestimated by on average factor of 105. For example, when

truncated data is used, the contribution of the intensive relative to the extensive margin is 1

to 0.1, while when a full sample is used the ratio is 1 to 10−5. Therefore, truncated samples

overestimate the contribution of the extensive margin to trade flows and, hence, to welfare.

Our findings contribute to several literatures. First is the empirical literature on firm

size distributions. Axtell (2001) shows that, when measured in number of workers, the right

tail of the U.S. firm size distribution closely follows Zipf’s law. Studying the French firm

size distribution, di Giovanni, Levchenko, and Rancière (2011) provide further evidence on

the estimates of the tail parameter of a Power law distribution and show that is lies close to

the unity. In contrast, recent work however has argued that sales distributions are not well

characterized by Zipf’s law alone. For example, Head, Mayer, and Thoenig (2014) show that

a Normal distribution provides a better fit to export sales data, primarily due to its superior

ability to match the left tail of export sales distributions.

This paper contributes to the firm size distribution literature by demonstrating that

the Exponentially Modified Gaussian distribution fits the sales data better than either the

Normal distribution or Zipf’s law. Being a convolution of a Normal and an Exponential dis-

tribution, the EMG can simultaneously match power law distributed right tails and Normally

distributed left tails of a standard log-sales distribution.

3



Further, in the context of Portuguese domestic manufacturing data, Cabral and Mata

(2003) document that the firm-size distribution is positively skewed. Bastos and Dias (2013)

extend this result to Portuguese exporting firms. In our work, we show that the asymmetric

nature of the data is also pronounced in the distribution of export sales. In the Brazilian

export data, the majority of destination-level exports are positively skewed and the degree of

skewness varies across destination. We demonstrate that an EMG distribution can match this

feature of the data, while a Normal distribution is symmetric and an Exponential distribution

has a constant skewness of 2.

This paper also contributes to the literature on the interaction between firm-level het-

erogeneity and the gains from trade. Melitz and Redding (2015) demonstrate that once

firm-level heterogeneity is no longer governed by a Pareto distribution, the aggregate elastic-

ity of trade flows with respect to variable trade costs depends on the entire sales distribution.

Bas, Mayer, and Thoenig (2015) measure the magnitude of the trade elasticity under differ-

ent assumptions about heterogeneity and show that the data favor a log-Normal distribution

over a Pareto distribution. In this paper, we quantitatively assess the fit of the Exponen-

tially Modified Gaussian distribution and find that the data favors the EMG over either

the Normal or Exponential (Pareto). This finding has implications for the aggregate trade

elasticity, that we develop herein.

We further add to the theoretical literature that provides microfoundations for empirically

observed distributions, such as power laws in the firm size distribution (see Gabaix (2009)

for a extensive review). We can show that the EMG distribution arises from a broad set

of model ingredients, such as Pareto distributed firm-level productivity and log-Normally

distributed product demand (see Timoshenko (2015) and Arkolakis et al. (2015)), or such

as Pareto distributed firm-level productivity and log-Normally distributed fixed costs (see

Eaton et al. (2011)). Log-sales are EMG distributed whenever the log-revenue function is

linear in random shocks, and those shocks consist of independent Normal and Exponential

components. In fact, it could be shown that if log-productivity follows a Brownian motion

and reflecting barriers are Normally distributed across firms, then the resulting steady state

distribution is an Exponentially Modified Gaussian distribution. This result is reminiscent

of Champernowne (1953), in which the reflecting barrier has a point mass.

In related work, Mrázová, Neary, and Parenti (2016) show that replacing standard CES

preferences with a “Constant Revenue Elasticity of Marginal Revenue” demand system gen-

erates a type of equivalence between log-Normal or Pareto productivity distributions. While

our papers share a focus on altering model ingredients in order to better account for em-

pirical observations, our paper focuses on assumptions governing distributions instead of

preferences.
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The Exponentially Modified Gaussian distribution has also been used in various recent

macroeconomic applications. Heathcote and Tsujiyama (2015) use the EMG to model id-

iosyncratic earnings in an incomplete markets model with optimal taxation. Badel and

Huggett (2014) employ the EMG in a similar model to capture the skewness in log-earnings

distributions, as the EMG fits the cross-sectional earnings distribution better than a conven-

tionally used Normal distribution. In a somewhat different context, Toda and Walsh (2015)

use a generalization of the EMG to model the distribution of consumption growth in the

Consumer Expenditure Survey and estimate consumption-based asset pricing models in the

presence of fat-tailed consumption growth.

The rest of the paper is organized as follows. Section 2 establishes a set of stylized

facts about the properties of log-sales distributions across markets. Section 3 constructs

a novel distribution, the Exponentially Modified Gaussian distribution, and characterizes

its properties. Section 4 fits theoretical distributions (EMG, Normal and Exponential) to

empirical export log-sales distributions and evaluates goodness of fit. Section 5 examines the

implications of the distributional assumptions for estimates of the aggregate trade elasticity.

Section 6 concludes. The proofs to all propositions are included in Appendix A.

2 Empirical Facts

The data come from the Brazilian customs declarations collected by SECEX (Secretaria

de Comercio Exterior).1 The data cover the period between 1990 and 2001, and include

the value of export sales at the firm-product-destination-year level. A product is defined

at a six-digit Harmonized Tariff System (HS) level. We focus on exports in manufacturing

products.2 To explore properties of the distribution of export sales across destinations and

years, we aggregate the data to the firm-destination-year level and focus on destination-year

observations where at least 100 firms export.3

An observation is an entire distribution of log-sales for a given destination in a given

year. The final sample, hence, consists of 847 destination-year distributions of log-sales. We

compute various moments of a distribution for each destination-year observation and present

a set of stylized facts describing how properties of distributions vary across destination-year

observations.

Table 1 presents various measures summarizing the dispersion and skewness of the log-

sales distribution across destination-year observations. Each row of Table 1 reports a mea-

1See Molinaz and Muendler (2013) for a detailed description of the dataset.
2Manufacturing HS codes lie in the range between 10.00.00 and 97.00.00. In an average year exports in
manufacturing products account for 90.82% of total exports.

3The same threshold is also used in the work of Fernandes et al. (2015).
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sure’s mean, minimum and maximum values as well as its standard deviation. To provide

a comprehensive overview of the differences in the properties of distributions we present

moment based (Panel A) and equivalent percentile based (Panel B) characterizations.

We focus our subsequent analysis and discussion on the percentile based characterizations

for two reasons. First, percentile based measures are less sensitive to outliers and extreme

values. Second, for any theoretical distribution percentiles are always defined and are finite.

Hence they can potentially be computed and compared to the data. That is not always

the case for moment based characterizations of a distributions. For example, consider a

Pareto distribution widely used in the literature. If the scale parameter of a Pareto distri-

bution falls below the value of two, the variance (a moment based measure) is infinite while

the interquartile range (an equivalent percentile based measure) is well defined. The mo-

ment based characterizations are reported for completeness. Table 1 indicates that log-sales

distributions vary substantially across destination-year observations.

Fact 1 The dispersion of log-sales varies by a factor of 3 across destination-year observations.

Consider the dispersion of log-sales as measured by the standard deviation and the in-

terquartile range (IQR). The IQR is defined as the difference between the value of the 75th

and the 25th percentiles of the log-sales distribution. Intuitively the IQR is a measure of

heterogeneity across firms in the data. It measures by how much larger a representative large

firm (the 75th percentile) is relative to a representative small firm (the 25th percentile). In

the data, we observe large variation in the IQR across destination-year observations, rang-

ing from 1.50 to 4.44. Accordingly, the destination with the most dispersed sales exhibits

nearly 3 times more heterogeneity than the least dispersed destination. Figure 1 presents

histograms of the values of the standard deviation (left Panel) and the interquartile range

(right Panel) across destination-year observations and provides further visual evidence that

the dispersion in log-sales varies substantially across destination-year observations.

In order to understand the quantitative significance of this level of dispersion, consider

the following example. Suppose the 25th percentile firm in a hypothetical market received

$100 in sales. In the destination-year observation with the maximum IQR (=4.44), the 75th

percentile firm’s sales were 100× e4.44 or approximately $8,000. Compare that to the value

of 100× e1.50 = $450 in sales for the minimum IQR or 100 × e2.88 = $1, 600 in sales for the

average destination-year observation.

At the 90th percentile and above, however, we observe firms with much larger sales,

typically upwards of one million dollars. In order to more precisely describe such asymmetry

in sales, next we present measures of skewness.

Fact 2 Across destinations, a large majority of log-sales distributions are not symmetric.
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We consider three different measures of skewness. The first is the standard moment-based

measure of skewness. The second is a nonparametric skew defined as the difference between

the mean and the median of a distribution divided by the standard deviation. The third is

the Kelly skewness defined as

Kelly skewness =
(P90− P50)− (P50− P10)

P90− P10
, (1)

where P10, P50, and P90 are the 10th, the 50th and the 90th percentiles of a distribution.4

As can be seen in Table 1, the average sample values of the skewness, nonparametric skew,

and the Kelly skewness are positive. All three statistics have mean values that are greater

than zero with a maximum p-value of 0.0003. Furthermore, according to these measures,

51% to 75% of log-sales distributions exhibit positive skew. Among the 847 destination-

year observations, 54% have positive skewness, 71% have positive nonparametric skew, and

75% have positive Kelly skewness. Figure 2 presents histograms of the skewness measures

across destination-year observations and provides further visual evidence that the majority

of log-sales export distributions are positively skewed.

In order to better understand the important of skewness in the export sales distributions,

consider the following explanation of the percentile-based Kelly skewness measure. Kelly

skewness measures length of the left tail (defined as P90 − P50) relative to the length of

the right tail (defined as P50− P10) of a distribution. For example, using the definition in

equation (1), a Kelly skewness of 1/3 implies that the 90th percentile is twice as far away

from the 50th than the 10th percentile, i.e. a distribution is heavily skewed to the right.

The sample average of the Kelly skewness of 0.04 implies that the 90th percentile is 8%

further from the 50th than the 10th, which is a non-negligible positive skew. Furthermore,

the histogram in Panel C of Figure 2 shows that the average Kelly skewness is not due to

a large mass around 0.04, but instead an average of both large and positive and negative

skewness values.

The asymmetric nature of the log-sales distributions is confirmed further through a stan-

dard test of Normality as described in D’Agostino et al. (1990). The test for normality of

a distribution based on skewness alone is rejected in 31% of observations at the 10-percent

significance level, in 24% at the 5-percent significance level, and in 16% at the 1-percent

significance level. The test for normality based on skewness and kurtosis is rejected in 42%

4In recent research on the asymmetry of earnings growth over the business cycle using administrative data
from the Social Security Administration, Guvenen, Ozkan, and Song (2014) use Kelly skewness to avoid the
sensitivity of standardized moments to extreme values. Given that our dataset contains fewer observations,
we utilize Kelly skewness for robustness - to better ensure that our results are not generated by a small
number of extreme value observations.
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of observations at the 10-percent significance level, in 32% at the 5-percent significance level,

and in 20% the 1-percent significance level.

Fact 3 Over the period in which Brazilian enacted trade reforms, log-sales distributions

became more dispersed and skewed.

During the 1990s, Brazil went through a period of liberalization reforms.5 During this

time, total exports grew by 6% per year on average and the number of exporters doubled

between 1990 and 2001. In order to better understand the effect of these economic changes

on Brazilian export sales, we study the following empirical relationships:

yit = βγt + αi + uit. (2)

In equation (2) we regress a variable of interest yit on a time trend γt and a set of destination

fixed effects αi. The results are presented in Tables 2 and 3. In Table 2, the dependent

variables are the standard deviation of log-sales (column 1) and the interquartile range of log-

sales (column 2). In Table 3, the dependent variables are the skewness of log-sales (column 1),

the nonparametric skew of log-sales (column 2), and the Kelly skewness of log-sales (column

3). With the exception of the inter-quartile range, all measures are increasing with time

within destination cells. Hence, over time, during the period of Brazilian economic reforms

in the 90’s, the distributions of log-sales exhibit an increase in dispersion and skewness.

An increase in dispersion is consistent with predictions from models of export market

participation, such as Melitz (2003). As trade costs decline, more firms enter. New firms

are less productive compared to incumbents and will receive lower export sales revenues.

Therefore, the entry of small firms will increase the variance of the log-sales distribution.

In the next section we introduce and characterize a novel distribution, the Exponentially

Modified Gaussian distribution (EMG). We show that the EMG distribution has a potential

to fit the empirical distribution of log-sales better than the most prevalent distributions used

in trade models.

3 The Exponentially Modified Gaussian (EMG) Dis-

tribution

The EMG distribution is defined as a convolution of a Normal distribution and an Exponen-

tial distribution. As a result, one of the key properties of the distribution is its differential

5See Dix-Carneiro and Kovak (2015) for a detailed description of the reforms.
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behavior in the right and left tails. The distribution exhibits a Normally-distributed left

tail and a Exponentially-distributed right tail. Hence, it is particularly well suited to fit

empirical regularities in the log-sales export data. In this section we derive some of the key

properties characterizing the distribution including its behavior in the right and left tails.

Consider a random variable z defined as z = x + y, where x and y are two independent

random variables. Assume x:N(µ, σ2), and y:Exp(λ). In this case, random variable z

is a convolution of a Normal and an Exponential random variables and is said to follow an

Exponential Modified Gaussian (EMG) distribution with parameters (µ, σ, λ). Proposition 1

below describes the EMG distribution with its cumulative distribution function, probability

density function, and the moment generating function.

Proposition 1 Let x and y be independent random variables such that x ∼ N (µ, σ2), y ∼
Exp(λ) and parameters satisfy µ ∈ R, σ ≥ 0 and λ ≥ 0. The random variable z ≡ x+ y has

the distribution function G : R→ [0, 1] given by:

G(z) = Φ

(
z − µ
σ

)
− e−λz+

(
µλ+σ2

2
λ2

)
Φ

(
z − µ
σ
− λσ

)
,

the density function:

g(z) = λe
−λz+

(
µλ+σ2

2
λ2

)
Φ

(
z − µ
σ
− λσ

)
,

and the moment generating function:

Mz(t) =
λ

λ− t
eµt+

σ2

2
t2 .

The proofs to all propositions are included in Appendix A.

The EMG distribution generalizes both the Normal and Exponential distributions. Con-

sider the variance of an Exponential distribution with scale parameter denoted by λ, which

is λ−2. By increasing the value of λ we can make the variance arbitrarily small and the

corresponding distribution has a point mass. Next consider the variance of the Normal dis-

tribution. As we decrease the variance parameter σ, the Normal distribution becomes a

point mass at µ.

Therefore, the EMG distribution can be transformed into a Normal distribution when

its Exponential distribution has zero variance (λ→ +∞) or transformed into a Exponential

distribution when its Normal distribution has zero variance (σ → 0). Furthermore, the

Exponential distribution controls the mass in the right tail. We provide formal justification

for these claims in the Proposition 2 below.
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Proposition 2 (Limiting Results) Let z be an Exponentially Modified Gaussian distributed

random variable with parameters (µ, σ, λ). The random variable z is Normally distributed in

the limit as λ goes to infinity, that is,

lim
λ→+∞

[
Φ

(
z − µ
σ

)
− e−λz+

(
µλ+σ2

2
λ2

)
Φ

(
z − µ
σ
− λσ

)]
= Φ

(
z − µ
σ

)
.

Furthermore, the random variable z is exponentially distributed in the limit as σ goes to zero.

That is

lim
σ→0

[
Φ

(
z − µ
σ

)
− e−λz+

(
µλ+σ2

2
λ2

)
Φ

(
z − µ
σ
− λσ

)]
= 1− e−λ(z−µ),

where, if µ > 0 then this limiting distribution is a shifted Exponential distribution on

(µ,+∞). Lastly, consider the limit with respect to the value of the random variable z. There

exists a value of z denoted z̄ such that ∀ z ≥ z̄ the distribution G(z) approaches a shifted

Exponential distribution:[
Φ

(
z − µ
σ

)
− e−λz+

(
µλ+σ2

2
λ2

)
Φ

(
z − µ
σ
− λσ

)]
≈ 1− e−λz+

(
µλ+σ2

2
λ2

)
.

The conditional expectation of the EMG distribution is described in Proposition 3 below.

Proposition 3 If z is an Exponentially Modified Gaussian distributed random variable on

(−∞,+∞) then the conditional first moment on (z∗,+∞) is∫ +∞

z∗
ezg(z)dz = Mz(1)

[
1− Φ

(
z∗ − µ− σ2

σ

)
+ e−(λ−1)(z∗−µ−λσ2)− 1

2
(λ−1)2σ2

Φ

(
z∗ − µ− λσ2

σ

)]
.

4 Theoretical Export Sales Distributions

In this section we describe our strategy for estimating distributional parameters using export

sales data from Brazil. Then, equipped with estimated parameters for each destination-

year log-sales distribution, we compare the functional fit of the Exponentially Modified

Gaussian, Normal and Exponential distributions. We show that the Exponentially Modified

Gaussian distribution has a superior fit to the data. Lastly, we document that there is large

heterogeneity in estimated parameters and show how the estimates reflect the variation in

data moments across destination-year observations.

4.1 Parameter Estimation

We choose distribution parameters so that the percentiles of the theoretical log-sales distri-

bution match the percentiles of the empirical log-sales distribution. Specifically, we recover
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parameters of a theoretical distribution from non-linear quantile regressions that we imple-

ment using a generalized method of moments procedure. Our procedure is a generalization

of Head, Mayer, and Thoenig (2014), who use quantile regressions to identify parameters

of the Pareto and a log-Normal distributions, both of which have linear quantile functions

and therefore parameters can be estimated using linear regression. In contrast, non-linear

regression is necessary for calibrating the parameters of the Exponentially Modified Gaussian

distribution, since the Exponentially Modified Gaussian distribution does not admit a linear

quantile function (as can be inferred from Proposition 1). For the Normal and Exponential

distributions, our procedure recovers the parameter estimates implied by linear regression.

Denote by nq the number of sales quantiles. Let qdi denote the i-th quantile of the

empirical log-sales distribution and F d
i denote the corresponding value of the empirical CDF

at the i-th quantile.6 By comparison, let qi(Θ) denote the i-th quantile of the theoretical

cumulative distribution function with parameters Θ and let F (qi|Θ) denote the corresponding

value of the theoretical cumulative distribution function at the i-th quantile.

For an arbitrary distribution over log-sales, we can recover the theoretical quantiles by

inverting the theoretical cumulative distribution function. Generally, the inverse can be com-

puted numerically for each value of the empirical cumulative distribution function, {F d
i }

nq
i=1,

by using a root-finding procedure to find the value of q such that F d
i = F (q|Θ) up to the

desired tolerance of error.

For the Exponentially Modified Gaussian distribution, the parameter vector is Θ =

(µ, σ, λ) such that q ∼ f(q|µ, σ, λ). However, the inverse of the Exponentially Modified

Gaussian distribution does not admit a closed form expression. Therefore, the inverse of the

Exponentially Modified Gaussian must be computed numerically.

By a change of variables, log-sales are Normally distributed if sales are log-Normally dis-

tributed. Similarly, log-sales are Exponentially distributed if sales are distributed according

to a Pareto. Both the Normal and Exponential distributions do, in fact, admit closed form

expressions for the inverted cumulative distribution functions, of the forms:

qNi (ΘN) = µN + σNΦ−1(F d
i )

qEi (ΘE) = log(
¯
r) + (1/λE) log(1− F d

i ),

where Φ(·) is the CDF of a standard normal, and ΘN = (µN , σN) and ΘE = (
¯
r, λE) denote

the parameter vectors for the Normal and Exponential distributions, respectively.

Finally, for a given theoretical distribution F (·|Θ), we choose parameters Θ that minimize

6Following Head, Mayer, and Thoenig (2014), we define the empirical CDF over log-sales as F d
i = (i −

0.3)/(nq + 0.4).
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the sum of the squared errors between empirical and theoretical quantiles:

min
Θ

nq∑
i=1

(
qdi − qi(Θ)

)2
. (3)

In estimation, we use the 1st through 99th percentiles of the empirical CDF to estimate

parameters. In practice, this choice eases computational burden compared to using each

data point, without changing the parameter estimates we recover. Furthermore, note that

choosing parameters to minimize the sum of squared residuals is equivalent to Head et al.’s

(2014) method of recovering parameters from quantile regressions. Our procedure recovers

the same parameter estimates for the Normal and Exponential distributions as those authors’

method.

4.2 Evaluating Distribution Fit

Having estimated distribution parameters, we now evaluate the fit of each distribution to

the log-sales distributions across destination-years.

Result 1 Across multiple goodness of fit statistics, the Exponentially Modified Gaussian

distribution fits the data better than the Normal and Exponential distributions.

We first argue that the Exponentially Modified Gaussian distribution fits the data better

by examining fitted distribution functions versus their empirical counterparts. Panel A of

Figure 3 shows the deviation of cross sectional destination-year average sales of theoretical

from empirical distributions at percentiles 5 through 95 of the distribution. We observe

that the Exponentially Modified Gaussian distribution deviates from the data less than

the Normal distribution. This is especially true at the mid to upper percentiles. Panel B

compares the left tail across the empirical, Exponentially Modified Gaussian and Normal

distributions. Specifically, the plot shows the log of the cumulative distribution functions,

which magnifies differences since the natural logarithm of a a small number is large and

negative. We observe that the Normal and Exponentially Modified Gaussian distributions

are very similar and only deviate from the empirical distribution at the zeroth percentile.

Panel C compares the left tail across distributions. We observe that the Exponentially

Modified Gaussian distribution barely deviates from the empirical distribution up to the

99th percentile. On the other hand, the Normal distribution is too thin relative to the data.

The second row in Figure 3 provides a stark and illustrative destination-year observa-

tion. Not only does the Exponentially Modified Gaussian distribution deviate little from the

empirical distribution in the 5th through 95th percentiles, but it fits the left and right tails
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of the distribution very closely. Only at the zeroth percentile is there a sizable deviation. In

comparison, the Normal distribution overpredicts the data in the middle of the distribution

and underpredicts in tails. The Normal distribution’s right tail is especially thin compared

to the empirical right tail.

To better formalize the suggestive evidence we have put forth thus far, we consider three

primary measures of the goodness of fit. Figure 4 presents goodness of fit statistics for

the Exponentially Modified Gaussian, Normal and Exponential distributions. Specifically,

the Figure presents scatter plots of goodness of fit measures from the Normal distribution

(top row) or the Exponential distribution (bottom row) on goodness of fit measures for the

Exponentially Modified Gaussian distribution.

The first measure is the sum of squared errors, which is given by the objective criterion

from the estimation procedure given in equation (3) when evaluated at the error-minimizing

parameters. Panel A of Figure 4 shows that errors are larger for the Normal and Exponential

distributions than the Exponentially Modified Gaussian distribution. This is unsurprising,

since the Exponentially Modified Gaussian distribution nests both the Normal and Expo-

nential distributions as limiting cases (see Proposition 2). More interesting is the fact that

both of the scatter plots in the first column (Panels A and D) show that the errors are much

larger, quantitatively speaking, for the Normal and Exponential distributions. However, the

magnitude of the difference in errors is smaller for the Normal distribution.

The second measure is the Mean Absolute Error, which is given by:

MAE(Θ) ≡ 1

nq

nq∑
i=1

∣∣∣qdi − qi(Θ)
∣∣∣.

The Mean Absolute Error measures the average deviation of the theoretical distribution

from the empirical in either direction, but unlike the sum of squared errors does not more

harshly penalize infrequent but large deviations. The second column (Panels B & E) of

Figure 4 shows that errors are larger for the Normal and Exponential distributions than

the Exponentially Modified Gaussian distribution. Therefore, the Mean Absolute Error

reinforces that the Exponentially Modified Gaussian distribution has a superior fit, and that

the difference in errors across the three distributions are not generated by a small number

of large deviations from empirical observations.

The third measure is the Anderson-Darling statistic, which is given by:

AD(Θ) ≡ nq

nq∑
i=1

(F d
i − F (qi|Θ))2

F (qi|Θ)(1− F (qi|Θ))
f(qi|Θ),
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where f(qi|Θ) is the theoretical probability density function.7 Compared to our two other

goodness of fit measures, the Anderson-Darling statistic places greater weight on observations

in the tails of the distributions. To see this, consider the denominator within the integral.

As F (q|Θ) approaches one or zero, [F (q|Θ)(1 − F (q|Θ))]−1 approaches infinity. Therefore,

the denominator is smallest for values of q for which F (q|Θ) is interior to [0, 1]. The third

column of Figure 4 shows that the Anderson-Darling statistics are larger for the Normal and

Exponential distributions than the Exponentially Modified Gaussian distribution. Therefore,

the deviations of the Normal and Exponential distributions from the data can be, at least

partially, attributed to a failure to match tail observations. This is particularly true for

the Exponential distribution, which by construction cannot match the left tail of the sales

distributions.

Taken together, these three measures show that the Exponentially Modified Gaussian

distribution routinely fits the log-sales distributions better across destination-year observa-

tions, and that the Normal and Exponential distributions routinely fit the data worse in the

tails of the distribution.

Result 2 Only the Exponentially Modified Gaussian distribution can match the empirical

dispersion in skewness.

The two most studied distributions in the trade and firm size dynamics literatures have

a stark feature: the Normal and Exponential distributions have constant higher order mo-

ments that do not vary with parameters. In particular the Normal distribution is symmetric

and therefore cannot possibly match the variation in skewness across destination-year ob-

servations. Furthermore, the Exponential distribution has constant skewness that does not

depend on parameters of the distribution, which again makes it an ill-suited distribution for

confronting the data on skewness. Figures 5, 6 and 7 plot theoretical moments from the

estimated distributions against the empirically observed moments.

Figure 7 compares Kelly skewness in the Exponentially Modified Gaussian distribution

(Panel A), Normal distribution (Panel B) and Exponential distribution (Panel C) to the

data. It is immediately clear that the Exponentially Modified Gaussian distribution is the

only distribution that exhibits variation in skewness across destination-year observations.

Furthermore, it captures positive skewness well.8

7We compute this the density function as a numerical approximation to the derivative of the cumulative
distribution function: f(q|Θ) ≡ (F (q + ∆|Θ)− F (q −∆|Θ))/2∆. The constant ∆ > 0 is chosen as a tenth
of the maximum distance between successive empirical quantiles.

8However, because the Exponentially Modified Gaussian distribution cannot generate negative skewness, it
cannot match all of the variation in the data. Our future work will relax this feature of the Exponentially
Modified Gaussian distribution.
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Figure 6 compares the interquartile range in the data (x-axes) to that in the three theo-

retical distributions. We see that all three distributions capture the general relationship in

the data, although the Exponential distribution under predicts. Figure 5 shows the compar-

ison with the median of the empirical and theoretical distributions. Only the Exponentially

Modified Gaussian distribution captures some amount of the cross destination-year variation

in medians. The median of the Normal distribution is nearly constant across destination-

years, which is at odds with the data. Lastly, the Exponential distribution consistently under

predicts the median.

Result 3 There is substantial parameter heterogeneity across destination-year observations.

To round out the section, we characterize the dispersion in estimated parameters across

destination-year observations. First consider Figure 8, which provides histograms for the

Exponentially Modified Gaussian distribution parameters (in solid black) and the Normal

distribution parameters (in dotted red). Note that we exclude the Normal distribution’s

µ parameter from the Panel A of Figure 8 since it will introduce spike at zero that will

dwarf the scale of the µ parameter for the Exponentially Modified Gaussian distribution.

In Panel A and B, we observe that there is a large dispersion in µ and σ parameters for

the Exponentially Modified Gaussian distribution. Notably, in Panel A we observe a spike

near zero, which reflects the mass of destination-year observations that the Exponentially

Modified Gaussian distribution estimation recovers a Normal distribution. In the Panel B,

we observe that the Normal distribution has similar dispersion in σ parameters, but that

the point estimates are larger on average. Lastly, Panel C provides a histogram for the

Exponentially Modified Gaussian distribution’s tail parameter, λ. We observe a spike near

one, which is Zipf’s law and a large mass of estimates below one.9 There is also a smaller

mass of tail parameters above five, which are the mass of destination-year observations that

the Exponentially Modified Gaussian distribution identifies as normally distributed.

Lastly, Figure 9 represents the differences between distribution parameters using a series

of scatter plots. In Panel A we again see that the parameter µ does not vary in the Normal

distribution, while µ is highly dispersed for the Exponentially Modified Gaussian distribu-

tion. Panel B shows that the parameter σ is similarly dispersed in the Normal and Expo-

nentially Modified Gaussian distributions. However, we observe that σ under the Normal

distribution is systematically larger, which reflects how the Normal distribution compensates

for its inability to match skewness in the data by increasing its variance. Panel C shows

9It is well known that the as the tail parameter approaches Zipf’s law, there no longer exist well defined
first and higher order moments of the Pareto distribution. The Exponentially Modified Gaussian distri-
bution inherits this issue from the Pareto distribution. Truncating the Exponentially Modified Gaussian
distribution resolves this issue.
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the parameter λ in the Exponential and Exponentially Modified Gaussian distributions, and

shows that the parameter λ under the Exponential distribution is systematically smaller.

This feature of the estimation helps the Exponential distribution match both middle and

upper percentiles simultaneously, which underscores a tradeoff the Exponential distribution

faces in fitting to the empirical distributions.

5 Aggregate Trade Elasticities

In this section we consider the standard workhorse model of trade and demonstrate how its

implications are both theoretically and quantitatively affected by varying assumptions on

fundamental sources of firm heterogeneity.

5.1 Theoretical Framework

We consider an economic environment in which firms are monopolistic competitors and

the representative household has constant elasticity of substitution preferences as in Melitz

(2003). We further assume that entry is exogenous, as in Chaney (2008). In this environment,

the sales of a firm from country i to country j are given by

rij(zij) =

(
ε− 1

ε

)ε−1

(τijwi)
1−ε YjP

ε−1
j ezij , (4)

where ε is the elasticity of substitution, τij is iceberg transportation costs, wi is the wage

rate in country i, and Yj and Pj are the income level and the price level in country j.10

We will refer to zij as a firm’s profitability in market j originating from country i. Notice,

that when taking logs of both sides of equation (4), the distribution of log-sales, log(rij), is

entirely governed by the distribution of zij and is shifted by an origin-destination specific

constant Cij ≡ log
((

ε−1
ε

)ε−1
(τijwi)

1−ε YjP
ε−1
j

)
:

log(rij) = Cij + zij. (5)

The trade literature varies in terms of the assumptions made with regards to the sources

and the nature of heterogeneity in the firms’ profitability zij. The general representation in

equation (4) encompasses the following three types of assumptions on fundamentals made

in the literature.

Assumption 1: Melitz (2003) assumes that the underlying source of heterogeneity in prof-

10A complete description and exposition of the model is presented in Appendix B.
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itability arises from heterogeneity in labor productivity across firms, denoted by ϕ. Chaney

(2008) further assumes that firm-level labor productivity is drawn from a Pareto distribution

with a shape parameter denoted by ξ. In this case, ezij is equal to ϕε−1, and by a change of

variables zij is distributed according to an Exponential distribution with a shape parameter

λ = ξ/(ε − 1). One can fit an Exponential distribution to log-sales data to get an estimate

for λ, and then recover the underlying ξ for a given value of the elasticity of substitution.

Assumption 2: In contrast to Chaney (2008), more recent work by Bas, Mayer, and

Thoenig (2015) and Fernandes, Klenow, Meleshchuk, Pierola, and Rodŕıguez-Clare (2015)

assumes that the underlying labor productivity ϕ is drawn from a log-Normal distribution,

logN(m, υ2). In this case, ezij also equals ϕε−1, and zij follows a Normal distribution,

N(µ, σ2) where µ = m(ε−1) and σ2 = υ2(ε−1)2. Similarly, one can fit a Normal distribution

to log-sales data to get an estimate of µ and σ2, and use the above equation and an assumed

value for the elasticity of substitution to recover the underlying m and υ2.11

Assumption 3: A third set of assumptions originates from the literature on learning and

firm-level export decisions. Timoshenko (2015) assumes that there are two separate sources

of heterogeneity in a firm’s profitability: a labor productivity ϕ drawn from a Pareto distri-

bution with a shape parameter ξ, and a demand shock eθ, where θ is drawn from a Normal

distribution N(m, υ2). In order to be consistent with standard trade models, assume that

there is no idiosyncratic or aggregate uncertainty after firms enter the market, firms al-

ways observe their demand shock, and that the demand shock does not vary over time (see

Appendix B). In this case, ezij equals eθϕε−1. Notice that when taking logs we obtain:

zij = θ + log
(
ϕε−1

)
. (6)

In this simplified learning model, a firm’s profitability is a sum of a Normal and an Ex-

ponential random variable. Hence, zij is a random variable that is EMG distributed with

parameters (µ, σ, λ), where µ = m + (ε− 1)/ξ, σ2 = υ2, and λ = ξ/ε. One can fit an EMG

distribution to log-sales data to estimate µ, σ2, and λ, and use an assumed value of the

elasticity of substitution to recover the fundamental parameters.11

The learning model described above, along the lines of Timoshenko (2015), provides a

micro-foundation for an EMG distribution governing log-sales. An EMG distribution arises

from environments in which two sources of fundamental uncertainty (that are distributed

according to a Normal and Exponential) additively determine the variation in firm-level

log-revenues.

11Given that the log-sales distribution is shifted by Cij (see equation (5)), the means are recovered up to a
constant. The second and higher order moments are not affected by such transformation.
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5.2 Trade Elasticity

The aggregate trade flow from country i to country j is given by

Xij = Mij

∫ +∞

z∗ij

rij(z)
gij(z)

1−Gij(z)
dz, (7)

where Mij is the mass of firms exporting from country i to j, z∗ij is the profitability entry

threshold, Gij(z) is the cumulative distribution function and gij(z) is the probability density

function governing firm profitability. The aggregate trade elasticity, defined as the percent-

change in trade flows between i and j as a result of a percent-change in variable trade costs

τij, can be expressed as:

∂ logXij

∂ log τij
= (1− ε)(1 + γij), (8)

where the contribution of the extensive margin to the elasticity is governed by the parameter

γij defined as:

γij ≡
gij(z

∗
ij)

(1−Gij(z∗ij))
· ez

∗
ij

Eij(ez|z > z∗ij)
, (9)

where Eij(·|z > z∗ij) is a conditional expectation over profitability.

Implication 1 The elasticity of substitution affects only the magnitude of the overall trade

elasticity, but not the relative contribution of the intensive versus extensive margins to the

elasticity.

Notice from equations (8) and (9) that the elasticity of substitution ε only affects the

magnitude of the overall trade elasticity, but not the relative contribution of the intensive

versus extensive margins to the elasticity. A conventional way to write equation (8) is

∂ logXij

∂ log τij
= (1− ε) + (1− ε)γij,

where the first term (1 − ε) is the contribution of the intensive margin to the aggregate

elasticity, and the second term (1 − ε)γij is the contribution of the extensive margin.12

However, the ratio of the intensive to extensive margin is independent from ε and is given

by γij. Therefore, γij is a sufficient statistic for the importance of the extensive margin.

12This decomposition was first suggested by Chaney (2008) in the context of a Pareto distribution, Melitz
and Redding (2015) provide a generalization consistent with equation (8).
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To situate the intensive and extensive margins in the context of the trade literature,

consider applying Assumption 1 to equation (8) so that the source of firm-level heterogeneity

is a Pareto distributed productivity shock. In this case, equation (8) simplifies to

∂ logXij

∂ log τij
= (1− ε)(1 + (λ− 1)),

where λ is estimated from the log-sales distribution. The empirical distribution frequently

exhibits a fat-tail, implying an estimate of λ close to one.13 As a result, the contribution of

the extensive margin (= λ− 1) relative to the intensive margin (= 1) is approximately zero.

This is a well known result in the trade literature.

Implication 2 The contribution of the extensive margin to the trade elasticity depends only

on the properties of the log-sales distribution.

In equation (9), the extensive margin elasticity γij is determined by two two objects:

(i) the entire shape of the log-sales distribution, which is given by the probability density

and the cumulative distribution functions, gij(·) and Gij(·) respectively, and (ii) the entry

profitability threshold, z∗ij.

In order to empirically discipline the extensive margin elasticity we will use empirical

log-sales distributions. First, parameters of the distribution Gij(·) can be recovered from the

micro-data on the log-sales distribution by applying the estimation procedure in Section 4.1.

Given estimated parameters we can recover the threshold z∗ij. As noted in Bas, Mayer, and

Thoenig (2015), z∗ij is determined by the average-to-minimum ratio of a sales distribution.

Using equation (4), we can express the theoretical average-to-minimum ratio as a function

of z∗ij alone:

Eij(rij(zij)|zij > z∗ij)

rij(z∗ij)
=

Eij(e
zij |zij > z∗ij)

ez
∗
ij

. (10)

Therefore, we can choose z∗ij so that expression (10) equals the empirical average-to-minimum

ratio. Importantly, computing z∗ij does not require any knowledge of the demand side elas-

ticity of substitution across varieties, ε.

As a result, in order to obtain an accurate estimate of the extensive margin elasticity, it

is crucial that the theoretical distribution matches the data as accurately as possible. As we

argued in Section 4, the Exponentially Modified Gaussian distribution provides a close fit to

the log-sales data and its fit is superior to other distributions commonly used in the trade

literature.

13For the estimates of the tail parameter see di Giovanni and Levchenko (2013).
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In the next section we apply the described methodology based on micro-data for esti-

mating the extensive margin contribution to trade elasticity to evaluate its magnitude, and

compute the bias implied by assuming a Normal distribution.

5.3 Estimates of Elasticities

Using equation (9) we compute the contribution of the extensive margin to trade elasticity

for each destination-year. We use destination-year specific estimates of the parameters of

distribution γij for two distributional assumptions (EMG versus Normal) as estimated in

Section 4.

Result 1 Overall, the extensive margin elasticity implied by EMG distributed log-sales is

larger than the elasticity implied by Normally distributed log-sales.

Panel A of Figure 10 plots estimates of the extensive margin elasticity γij. Each point cor-

responds to an elasticity estimate for a given destination-year. The x-coordinate corresponds

to the elasticity implied by a Normal fit to the log-sales distribution, while the y-coordinate

corresponds to the elasticity implied by an EMG fit. The red line is the 45-degree line.

If asymmetry in log-sales distributions played no role in magnitude of the extensive mar-

gin elasticity, then the EMG extensive margin elasticity estimates would reduce to a symmet-

ric Normal distribution estimates and all points in Panel A would lie on the 45-degree line.

However, as is clear from Panel A of Figure 10, that is not the case. The deviations from

the 45-degree line are the most pronounced for the destination-year observations exhibiting

fatter right-tails compared to those implied by a Normal distribution. Those are the distri-

butions with an estimate of the EMG parameter λ being below 8, and are denoted by stars

in Panel A of Figure 10. Hence, as can be seen from Panel A of Figure 10 destination-year

observations that exhibit a fatter right-tail have much larger extensive margin elasticities

than would be implied by a Normal distribution.

Furthermore, as can be seen from Panel A of Figure 10, the magnitude of the extensive

margin elasticity varies between 10−12 to 10−2 with majority of the values being concentrated

around 10−5.14

Result 2 When log-sales distributions are fat-tailed, the Normal distribution generates ex-

tensive margin elasticities that under-predict magnitudes by a factor of 10 to 1,000.

Panel B of Figure 10 demonstrates the extent of the bias in the extensive margin elastici-

ties generated by the Normal distribution. For a subset of observations in which λ < 2, Panel

14The sample average extensive margin elasticity implied by the EMG distribution is 1.6× 10−5; by Normal
8.2× 10−6.

20



B of Figure 10 plots the ratio of the EMG relative to Normal extensive margin elasticity

estimates against the estimate of λ. As is clear from the Figure, the smaller is the estimated

value of λ, the more fat-tailed is the log-sales distribution and the larger is the bias implied

by the Normal distribution. For example, if the estimated λ is 1.05 or smaller, then the

EMG implied extensive margin elasticity is 10 to 1,000 larger than the elasticity generated

by a Normal distribution for the same destination-year observation. Furthermore, the bias

is pervasive, as approximately 65% of all observations have an estimated λ less than 2.

Result 3 Even a small data truncation of all export sales lower than $1,000 generates an

upward bias in the estimates of the extensive margin elasticity of the order of magnitude 105

on average.

The value of the extensive margin contribution to the trade elasticity γij is highly sen-

sitive to the value of the the average-to-minimum ratio. To demonstrate the nature of the

sensitivity, Panel A of Figure 11 plots the value of γij for parameters of an EMG distribu-

tion fitted to match Brazilian exports to Germany in 2001 against counterfactual values of

the average-to-minimum ratio. Both the counterfactual values of the average-to-minimum

ratio and the counterfactual values of the extensive margin elasticity are normalized by their

respective true values in the data. We hold the fitted distributional parameters fixed but

re-compute the value of z∗ij using the average-to-minimum ratios between 50% below the

true value and 50% above the true value. This allows us to re-compute the extensive margin

elasticity γij with truncated data.

As can be seen from Panel A of Figure 11, underestimation of the average-to-minimum

ratio by 50%, for example, leads to overestimation of the extensive margin elasticity by a

factor of 4.5. Similarly, the lower is the average-to-minimum ratio, the greater is the extent

of the bias.

Because many customs-level data sets are truncated, the example in Panel A of Figure 11

demonstrates an important issue in computing the extensive margin elasticity. For example,

Bas et al. (2015) use French trade data, where firms are not required to report their exports

to an EU member country, unless the value of the shipment exceeds 250,000 euros. For

non-EU member countries, firms need not report trade values below 1,000 euros. These

reporting rules are exogenous to the researcher, but they are not without consequence for

estimating policy relevant trade statistics. Omitting the smallest firms from the sample

leads to underestimated average-to-minimum export sales ratios, and therefore leads to an

overestimation of the contribution of the extensive margin to trade.

We infer the magnitude of the bias created by the exogenous data truncation by con-

ducting the following counterfactual experiment. We take the original data and drop all
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firm-destination-year observation with a value of exports below $1,000. We then re-fit an

EMG distribution to these truncated data, recompute the average-to-minimum ratio based

on the truncated sample, and finally recompute the extensive margin elasticities. In Panel

B of Figure 11 we plot the counterfactual elasticities relative the true ones implied by the

non-truncated data (as computed in Section 4). Each point in the scatter plot represents

a destination-year observation. The counterfactual value of the average-to-minimum ra-

tio is measured on x-axis and the counterfactual value of the extensive margin elasticity

is measured on y-axis. Both values are normalized by their respective true value for the

corresponding destination-year observation.

As can be seen from Panel B of Figure 11, a relatively small truncation value of $1,000

results in an average-to-minimum ratio that is 21% as large as and as small as 0.2% of

its non-truncated value. Truncation results in an overestimation of the extensive margin

elasticity by a factor ranging from 0.8 to 107 with an average value of 105. For further

comparison, Panel C of Figure 11 plots a histogram of the extensive margin elasticities for

the full versus the truncated sample. Panel C shows that when the data is truncated, the

entire distribution of the extensive margin elasticities is shifted to the right by a few orders

of magnitude.

6 Conclusion

In this paper, we introduced a novel distribution to the growing literature on the interac-

tion between firm-level heterogeneity and the gains from trade. The Exponentially Modified

Gaussian (EMG) distribution parsimoniously captures the salient features of log-sales dis-

tributions of exports, particularly a fat right tail and a Normal-like left tail. Furthermore,

we document high degrees of variation in sales dispersion and asymmetry across destination

markets. The EMG, once fit to log-sales distributions of exports across destination markets,

not only characterizes the data well but also fits the data better than either the Normal or

Exponential distributions that are used in most international trade research. Using these

fitted distributions, we compute aggregate trade elasticities and show that the Normal dis-

tribution overstates the magnitude of the extensive margin elasticity. Furthermore we show

that when export sales data are truncated, as is true for other work that find high aggre-

gate trade elasticities due to a large contribution of the extensive margin, aggregate trade

elasticities become larger than their true values computed from untruncated data.
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Figure 1: Heterogeneity in the dispersion of log-sales across export destinations.
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Notes: The figure depicts the distribution of the values of the interquartile range and the standard deviation

of log-sales across 847 destination-year observations where at least 100 firms export.

Figure 2: Heterogeneity in the skewness of log-sales across export destinations.
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Figure 10: Extensive Margin Elasticity Estimates
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Notes: All panels in the figure depict the estimates of the extensive margin elasticity for destination-year

observations with an EMG estimate of the tail parameter λ > 1. The elasticity is not defined for λ ≤ 1. In

Panel A stars denote destination-year observations with the estimated parameter 1 < λ < 8; circles denote

destination-year observations with the estimated parameter λ > 8.
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Figure 11: Extensive Margin Elasticity: Sample Truncation Bias
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Notes: Panel A plots the values of the extensive margin elasticity computed using a fitted EMG distribution

to Brazilian exports to Germany in 2001 against a counterfactual value of the average-to-minimum ratio. The

conterfactual value of the average-to-minimum ratio measured on x-axis is normalized by the true value. The

counterfactual value of the extensive margin elasticity measured on y-axis is normalized by the true value.

Panel B plots the values of the extensive margin elasticity computed using a fitted EMG distribution. Each

dot is a destination-year observation. The counterfactual value of the average-to-minimum ratio measured

on x-axis is normalized by the true value for the corresponding observation. The counterfactual value of

the extensive margin elasticity measured on y-axis is normalized by the true value for the corresponding

observation.
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Table 1: Properties of the log-sales distribution across destination-year obser-
vations over 1990-2001

Statistic Mean Standard

Deviation

Min Max

Panel A: Moment based characterization of a distribution

The standard deviation of log-sales 2.11 0.28 1.28 2.77

The skewness of log-sales 0.03 0.24 -1.08 1.29

The nonparametric skew 0.03 0.06 -0.19 0.21

Panel B: percentile based characterization of a distribution

The interquartile range 2.82 0.49 1.50 4.44

The Kelly skewness 0.04 0.08 -0.30 0.35

Note: the statistics are reported across 847 destination-year observations where at least
100 firms export.

Table 2: OLS regressions of log-sales dispersion on a
time trend

Dep. variable: dispersion st. dev. IQR

(1) (2)

Time trend 0.361*** -0.358*

(0.097) (0.210)

R2 0.87 0.80

No. obs. 845 845

Dest. FE yes yes

Note: the dependent variable across columns is the
inidcated measure of dispersion of the log-sales
disitribution across destination-year observations.

***, * Statistically significant at 1%, 10% level.
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Table 3: OLS regressions of log-sales skewness on a time trend

Dep. variable: skewness sample nonparametric kelly

(1) (2) (3)

Time trend 0.845*** 0.245*** 0.332***

(0.161) (0.044) (0.062)

R2 0.53 0.40 0.39

No. obs. 845 845 845

Dest. FE yes yes yes

Note: the dependent variable across columns is the inidcated measure
of skewness of the log-sales disitribution across destination-year
observations.

*** Statistically significant at 1% level.
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A Proofs of Propositions

Proof of Proposition 1

Let x and y be random variables such that x ∼ N (µ, σ2), y ∼ Exp(λ) and parameters

satisfy µ ∈ R, σ ≥ 0 and λ ≥ 0. For notational convenience, denote the density function

that corresponds to the Normal distribution N (µ, σ2) by f(x) = (1/σ)φ((x− µ)/σ). In the

following derivations, we will make use of the conditional expectation for log-Normal random

variables: ∫ +∞

x∗
(ex)κ f(x)dx = eκµ+ 1

2
κ2σ2

(
1− Φ

(
x∗ − µ
σ

− κσ
))

Let the random variable z ≡ x + y have the distribution function G : R → [0, 1], which we

now derive: ∫ z∗

−∞
zg(z)dz = Prob (x+ y < z∗) =

∫ z∗

−∞

(
1− e−λ(z∗−x)

)
f(x)dx

Using the conditional expectation for log-Normal random variables, we obtain:

G(z) = Φ

(
z∗ − µ
σ

)
− e−λz∗+(λµ+ 1

2
λ2σ2)Φ

(
z∗ − µ− λσ2

σ

)
Next we derive the density function:

∂

∂z

∫ z

−∞
zdG(z) =

∫ z

−∞
λe−λyf(z − y)dy

=
λ√
2πσ

∫ z

−∞
e−λy−

1
2( z−y−µσ )

2

dy

=
λ√
2πσ

e−λz+λµ+ 1
2
λ2σ2

∫ z

−∞
e
− 1

2

(
z−y−µ−λσ2

σ

)2

dy

g(z) = λe−λz+(λµ+ 1
2
λ2σ2)Φ

(
z − µ− λσ2

σ

)
Lastly, we derive the moment generating function. To do so, we will appeal to an intermediate

result, that if g(z) is a density function then it must integrate to one:∫ +∞

−∞
g(z)dz =

∫ +∞

−∞
λe−λz+(λµ+ 1

2
λ2σ2)Φ

(
z − µ− λσ2

σ

)
dz

= e−
1
2
λ2σ2

∫ +∞

−∞
λσe−λσy

∫ y

−∞

1√
2π
e−

1
2
x2dxdy
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where we have used the change of variables y = (z − µ− λσ2)/σ. Then we know that:∫ +∞

−∞
λσe−λσy

∫ y

−∞

1√
2π
e−

1
2
x2dxdy = e

1
2
λ2σ2

Given this result, we can use the change of variables y = (z − µ − λσ2)/σ to derive the

moment generating function:

Mz(t) =

∫ +∞

−∞
e−tzλe−λz+(λµ+ 1

2
λ2σ2)Φ

(
z − µ− λσ2

σ

)
dz

=
λ

λ− t
e−

1
2
λ2σ2+t(µ+λσ2) ·

∫ +∞

−∞
(λ− t)σe−(λ−t)σy

∫ y

−∞

1√
2π
e−

1
2
x2dxdy

=
λ

λ− t
e−

1
2
λ2σ2+t(µ+λσ2) · e

1
2

(λ−t)2σ2

=
λ

λ− t
· eµt+

σ2

2
t2

Note that the MGF for the EMG is the product of the MFG for the Exponential distribution

and the MGF for the N (µ, σ2) distribution. �

Proof of Proposition 2

We will consider each of the three limits of G(z) in turn:

(a) λ→ +∞, (b) σ → 0, (c) z → +∞

(a) We first take the limit of G(z) as λ→ +∞. We know that

lim
λ→+∞

Φ

(
z − µ− λσ2

σ

)
= lim

λ→+∞
e−λz = 0 ∀ z ∈ R̄, z 6= 0

We must now show that exp(λµ + λ2σ2/2) reaches +∞ at a slower rate than exp(−λz) ×
Φ((z − µ− λσ2)/σ) reaches 0. To do so, we appeal to l’Hôpital’s rule:

lim
λ→+∞

∂
∂λ
e−λzΦ

(
z−µ−λσ2

σ

)
∂
∂λ
eλµ+ 1

2
λ2σ2

= lim
λ→+∞

−zΦ
(
z−µ−λσ2

σ

)
+ 1

σ
φ
(
z−µ−λσ2

σ

)
µ+ λσ2

e−λz−λµ−
1
2
λ2σ2

= 0

The limit equals zero since eλ
2σ2

converges to zero faster than linearly, e.g. faster than λσ2.

(b) Next take the limit as σ → 0. Let µ > 0. As σ approaches 0, the Normal density

becomes a point mass at µ and therefore: Φ
(
z−µ
σ

)
= 1[z ≥ µ]. Then clearly the limit of

G(z) as σ approaches 0 equals 1− exp(−λ(z − µ)) on (µ,+∞) and zero elsewhere.

38



(c) Lastly, we show that there exists some z̄ such that for all z ≥ z̄, G(z) ≈ 1−exp(−λ(z−
µ− 1

2
λσ2)). We must show that as z → +∞, exp(−λz) approaches 0 at a slower rate than

Φ( z−µ−λσ
2

σ
) approaches 1. To do so, apply l’Hôpital’s rule:

lim
z→+∞

e−λz

Φ( z−µ−λσ
2

σ
)

= lim
z→+∞

−λe−λz
1
σ
φ( z−µ−λσ

2

σ
)
∝ lim

z→+∞
e
−
(
λ+µ+λσ2

σ2

)
z+ 1

2( zσ )
2

= +∞

Therefore, since both functions are decreasing in z, exp(−λz) approaches 0 slower than

Φ( z−µ−λσ
2

σ
) approaches 1. Therefore, there exists z̄ sufficiently large such that:

∀ z ≥ z̄ Φ

(
z − µ
σ

)
≈ 1 and Φ(

z − µ− λσ2

σ
) ≈ 1

and

G(z) ≈ 1− e−λz+
(
µλ+σ2

2
λ2

)

Therefore for sufficiently large values of z, the EMG is approximated by a shifted Exponential

distribution. �

Proof of Proposition 3

Let x ∼ N (µ, σ2), y ∼ Exp(λ) and z be an EMG distributed random variable on

(−∞,+∞). Then the conditional first moment on (z∗,+∞) is:∫ +∞

z∗
ezdG(z) =

∫ ∫
x+y>z∗

ex+yλe−λyf(x)dxdy

=

∫ +∞

z∗
exf(x)dx

∫ +∞

0

eyλe−λydy +

∫ z∗

−∞
ex
(∫ +∞

z∗−x
eyλe−λydy

)
f(x)dx

Take the first integral in the expression. This can be simplified to:∫ +∞

z∗
exf(x)dx

∫ +∞

0

eyλe−λydy =
λ

λ− 1
· eµ+ 1

2
σ2

(
1− Φ

(
z∗ − µ− σ2

σ

))
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The second integral in the expression requires more work:∫ z∗

−∞
ex
(∫ +∞

z∗−x
eyλe−λydy

)
f(x)dx =

λ

λ− 1
e−(λ−1)z∗

∫ z∗

−∞
eλxf(x)dx

=
λ

λ− 1
e−(λ−1)z∗

∫ λz∗

−∞
eλxf(λx)d(λx)

=
λ

λ− 1
e−(λ−1)z∗eλµ+ 1

2
λ2σ2

Φ

(
z∗ − µ− λσ2

σ

)
Therefore, by summing the two integrals we obtain the conditional expectation:∫ +∞

z∗
ezdG(z) = Mz(1)

[
1− Φ

(
z∗ − µ− σ2

σ

)
+ e−(λ−1)(z∗−µ−λσ2)− 1

2
(λ−1)2σ2

Φ

(
z∗ − µ− λσ2

σ

)]
as desired. �

B The model

B.1 Economic Environment

There are N countries. We will denote by i the origin country and by j a destination country.

Each country j is populated by Lj identical consumers with preferences given by a constant

elasticity of substitution utility function given by

Uj =

(
N∑
i=1

∫
ω∈Ωij

(
eθij(ω)

) 1
ε cij(ω)

ε−1
ε dω

) ε
ε−1

, (11)

where Ωij is the set of varieties consumed in country j originating from country i, cij(ω)

is the consumption of variety ω ∈ Ωij, ε is the elasticity of substitution, and θij(ω) is the

demand parameter for variety ω ∈ Ωij.
15

Each consumer owns a share of domestic firms and is endowed with one unit of labor

that is inelastically supplied to the market. Cost minimization yields optimal demand for

variety ω ∈ Ωij given by

cij(ω) = eθij(ω)pij(ω)−εYjP
ε−1
j , (12)

where pij(ω) is the price of variety ω ∈ Ωij, Yj is income in country j and Pj is the aggregate

15Bernard, Redding, and Schott (2010) interpret θij(ω) as variations in consumer tastes or relative demand
across different varieties. In Timoshenko (2015) θij(ω) represents product demand that firms need to learn
over time through market participation.
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price index in country j. The aggregate price index is given by

P 1−ε
j =

N∑
i=1

∫
ω∈Ωij

eθij(ω)pij(ω)1−εdω. (13)

B.2 Supply

As in Chaney (2008), each country is endowed with the exogenous mass Ji of prospective

entrants. Upon entry, a firm is endowed with an idiosyncratic labor productivity level ϕ and

a destination-specific demand parameter θj. Productivity and destination-specific demand

parameters are drawn from separate independent distributions. Firms face fixed fij and

variable τij costs of selling from country i to country j denominated in terms of units of

labor.

Once productivity and demand are realized, firms compete in a monopolistically com-

petitive environment. Firms maximize profits subject to the consumer demand (12) yielding

the optimal price given by

pij(ϕ) =
ε

ε− 1

τijwi
ϕ

,

where wi is the wage in country i. The corresponding firm’s optimal revenues and profits

are given by

rij(θij, ϕ) =

(
ε− 1

ε

)ε−1

(τijwi)
1−ε YjP

ε−1
j eθijϕε−1, (14)

πij(θij, ϕ) =
rij(θij, ϕ)

ε
− wifij. (15)

Notice from equations (14) and (15) that a firm’s profitability in market j depends on both

a firm’s productivity ϕ and a demand parameter θj in a multiplicative way. Hence a low

productivity firm can generate positive profits if the demand for its product is high, and

vise versa. Thus, selection into a market occurs based on a firm’s profitability, and not

productivity or demand alone. Denote by zij the firm’s payoff relevant state variable given

by

zij = θij + log
(
ϕε−1

)
. (16)

We will refer to zij as a firm’s profitability in market j. Given zij, we can rewrite the
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firm’s optimal revenue and profit as a function of profitability zij as

rij(zij) =

(
ε− 1

ε

)ε−1

(τijwi)
1−ε YjP

ε−1
j ezij . (17)

πij(zij) =
rij(zij)

ε
− wifij. (18)

Since there are no sunk entry costs, the profitability entry threshold is determined by the

zero-profit condition πij(z
∗
ij) = 0 and is given by

ez
∗
ij =

εwifij(wiτij)
ε−1(

ε−1
ε

)ε−1
YjP

ε−1
j

. (19)

The firm’s optimal revenue can then be written as a function of a firm’s profitability, zij,

and the profitability entry threshold z∗ij as

rij(zij) = εwifij
ezij

ez
∗
ij
. (20)

B.3 Trade Elasticity

The value of exports from country i to country j is defined as

Xij = Mij

∫ +∞

z∗ij

rij(z)
gij(z)

1−Gij(z)
dz, (21)

where Mij is the equilibrium mass of firms selling from country i to country j and is given

by

Mij = Ji(1−Gij(z
∗
ij)). (22)

The cumulative and the probability distribution functions of firms profitabilities are denoted

by Gij(z) and gij(z) correspondingly.

Proposition 4 below establishes the partial trade elasticity result.

Proposition 4 The partial elasticity of trade flows with respect to variable trade costs is

given by

∂ logXij

∂ log τij
= (1− ε)(1 + γij),
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where γij given by

γij =
gij(z

∗
ij)

(1−Gij(z∗ij))

ez
∗
ij

Eij(ez|z > z∗ij)
.

Proof: Substitute equations (20) and (22) into equation (21) to obtain

Xij = εJiwifij

∫ +∞

z∗ij

(
ezij−z

∗
ij
)
gij(z)dz.

Using the Leibniz’s Integration Rule:

∂Xij

∂τij
= εJiwifij

[
−
∂z∗ij
∂τij

∫ +∞

z∗ij

(
ezij−z

∗
ij
)
gij(z)dz − g(z∗ij)

∂z∗ij
∂τij

]

= εJiwifij

[
−
∂z∗ij
∂τij

e−z
∗
ij(1−Gij(z

∗
ij))Eij(e

z|z > z∗ij)− g(z∗ij)
∂z∗ij
∂τij

]
.

Now we must derive the partial derivative of the profitability threshold with respect to a

change in variable costs. To do so, we use the expression characterizing the threshold in

equation (19):

∂z∗ij
∂τij

=
∂

∂τij
log

(
εwifij(wiτij)

ε−1(
ε−1
ε

)ε−1 YjP
ε−1
J

)
=
ε− 1

τij
.

Notice that the value of trade flows can be expressed as

Xij = εJiwifije
−z∗ij(1−Gij(z

∗
ij))Eij(e

z|z > z∗ij).

Therefore, the partial elasticity of trade is:

∂ logXij

∂ log τij
=

τij
Xij

· εJiwifij
[

1− ε
τij

e−z
∗
ij(1−Gij(z

∗
ij))Eij(e

z|z > z∗ij) + g(z∗ij)
1− ε
τij

]
= (1− ε) +

g(z∗ij)

1−Gij(z∗ij)
· (1− ε)ez∗ij
Eij(ez|z > z∗ij)

= (1− ε) + (1− ε)γij
= (1− ε)(1 + γij).

�
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